his.sePublikationer
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Integral Privacy Compliant Statistics Computation
Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. Hamilton Institute, Maynooth University, Maynooth, Ireland. (Skövde Artificial Intelligence Lab (SAIL))ORCID-id: 0000-0002-2564-0683
Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. Hamilton Institute, Maynooth University, Maynooth, Ireland. (Skövde Artificial Intelligence Lab (SAIL))ORCID-id: 0000-0002-0368-8037
2019 (Engelska)Ingår i: Data Privacy Management, Cryptocurrencies and Blockchain Technology: ESORICS 2019 International Workshops, DPM 2019 and CBT 2019, Luxembourg, September 26–27, 2019, Proceedings / [ed] Cristina Pérez-Solà, Guillermo Navarro-Arribas, Alex Biryukov, Joaquin Garcia-Alfaro, Cham: Springer, 2019, Vol. 11737, s. 22-38Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Data analysis is expected to provide accurate descriptions of the data. However, this is in opposition to privacy requirements when working with sensitive data. In this case, there is a need to ensure that no disclosure of sensitive information takes place by releasing the data analysis results. Therefore, privacy-preserving data analysis has become significant. Enforcing strict privacy guarantees can significantly distort data or the results of the data analysis, thus limiting their analytical utility (i.e., differential privacy). In an attempt to address this issue, in this paper we discuss how “integral privacy”; a re-sampling based privacy model; can be used to compute descriptive statistics of a given dataset with high utility. In integral privacy, privacy is achieved through the notion of stability, which leads to release of the least susceptible data analysis result towards the changes in the input dataset. Here, stability is explained by the relative frequency of different generators (re-samples of data) that lead to the same data analysis results. In this work, we compare the results of integrally private statistics with respect to different theoretical data distributions and real world data with differing parameters. Moreover, the results are compared with statistics obtained through differential privacy. Finally, through empirical analysis, it is shown that the integral privacy based approach has high utility and robustness compared to differential privacy. Due to the computational complexity of the method we propose that integral privacy to be more suitable towards small datasets where differential privacy performs poorly. However, adopting an efficient re-sampling mechanism can further improve the computational efficiency in terms of integral privacy. © 2019, The Author(s).

Ort, förlag, år, upplaga, sidor
Cham: Springer, 2019. Vol. 11737, s. 22-38
Serie
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 11737
Nyckelord [en]
Descriptive statistics, Privacy-preserving statistics, Privacy-preseving data analysis, Blockchain, Computational efficiency, Computer privacy, Electronic money, Information analysis, Sampling, Statistics, Data distribution, Differential privacies, Empirical analysis, Privacy preserving, Privacy requirements, Relative frequencies, Sensitive informations, Data privacy
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Skövde Artificial Intelligence Lab (SAIL)
Identifikatorer
URN: urn:nbn:se:his:diva-18008DOI: 10.1007/978-3-030-31500-9_2Scopus ID: 2-s2.0-85075604651ISBN: 978-3-030-31499-6 (tryckt)ISBN: 978-3-030-31500-9 (digital)OAI: oai:DiVA.org:his-18008DiVA, id: diva2:1377799
Konferens
ESORICS 2019 International Workshops, DPM 2019 and CBT 2019, Luxembourg, September 26–27, 2019
Tillgänglig från: 2019-12-12 Skapad: 2019-12-12 Senast uppdaterad: 2019-12-13Bibliografiskt granskad

Open Access i DiVA

fulltext(1672 kB)10 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1672 kBChecksumma SHA-512
a4160ebadf84fd44ea71fc7487083030fb1ebff06131637241c36afa735479ae383010c0d3c6760ae3e3a4eb5a99f9039de8a62d20b69b774cd083804a7be9ec
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Senavirathne, NavodaTorra, Vicenç

Sök vidare i DiVA

Av författaren/redaktören
Senavirathne, NavodaTorra, Vicenç
Av organisationen
Institutionen för informationsteknologiForskningscentrum för Informationsteknologi
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 10 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 69 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf