his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
miRFA: an automated pipeline for microRNA functional analysis with correlation support from TCGA and TCPA expression data in pancreatic cancer
Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden.
Högskolan i Skövde, Institutionen för biovetenskap. Högskolan i Skövde, Forskningscentrum för Systembiologi. Department of Physics, Chemistry and Biology, Bioinformatics, Linköping University, Linköping, Sweden. (Translationell bioinformatik, Translational bioinformatics)ORCID-id: 0000-0001-7804-1177
Högskolan i Skövde, Institutionen för biovetenskap. Högskolan i Skövde, Forskningscentrum för Systembiologi. (Translationell bioinformatik, Translational bioinformatics)ORCID-id: 0000-0001-6427-0315
Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden.
2019 (Engelska)Ingår i: BMC Bioinformatics, ISSN 1471-2105, E-ISSN 1471-2105, Vol. 20, nr 1, s. 1-17, artikel-id 393Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

BACKGROUND: MicroRNAs (miRNAs) are small RNAs that regulate gene expression at a post-transcriptional level and are emerging as potentially important biomarkers for various disease states, including pancreatic cancer. In silico-based functional analysis of miRNAs usually consists of miRNA target prediction and functional enrichment analysis of miRNA targets. Since miRNA target prediction methods generate a large number of false positive target genes, further validation to narrow down interesting candidate miRNA targets is needed. One commonly used method correlates miRNA and mRNA expression to assess the regulatory effect of a particular miRNA. The aim of this study was to build a bioinformatics pipeline in R for miRNA functional analysis including correlation analyses between miRNA expression levels and its targets on mRNA and protein expression levels available from the cancer genome atlas (TCGA) and the cancer proteome atlas (TCPA). TCGA-derived expression data of specific mature miRNA isoforms from pancreatic cancer tissue was used.

RESULTS: Fifteen circulating miRNAs with significantly altered expression levels detected in pancreatic cancer patients were queried separately in the pipeline. The pipeline generated predicted miRNA target genes, enriched gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) pathways. Predicted miRNA targets were evaluated by correlation analyses between each miRNA and its predicted targets. MiRNA functional analysis in combination with Kaplan-Meier survival analysis suggest that hsa-miR-885-5p could act as a tumor suppressor and should be validated as a potential prognostic biomarker in pancreatic cancer.

CONCLUSIONS: Our miRNA functional analysis (miRFA) pipeline can serve as a valuable tool in biomarker discovery involving mature miRNAs associated with pancreatic cancer and could be developed to cover additional cancer types. Results for all mature miRNAs in TCGA pancreatic adenocarcinoma dataset can be studied and downloaded through a shiny web application at https://emmbor.shinyapps.io/mirfa/ .

Ort, förlag, år, upplaga, sidor
BioMed Central, 2019. Vol. 20, nr 1, s. 1-17, artikel-id 393
Nyckelord [en]
Functional enrichment, Mature miRNA, Pancreatic cancer, TCGA, TCPA, miRNA functional analysis, miRNA target prediction
Nationell ämneskategori
Bioinformatik och systembiologi
Forskningsämne
Bioinformatik; INF502 Biomarkörer
Identifikatorer
URN: urn:nbn:se:his:diva-17456DOI: 10.1186/s12859-019-2974-3ISI: 000475761100001PubMedID: 31311505Scopus ID: 2-s2.0-85069159500OAI: oai:DiVA.org:his-17456DiVA, id: diva2:1338034
Tillgänglig från: 2019-07-19 Skapad: 2019-07-19 Senast uppdaterad: 2019-08-07Bibliografiskt granskad

Open Access i DiVA

fulltext(2256 kB)32 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2256 kBChecksumma SHA-512
b89705ec3248a1ab48d2716f0f6224d6b042202b6fa11a9d9f609f436cfb058ff9e2c76de3af1c17d1925e7a8627dcfd3791139eb991d11207957e899aab3b2b
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

de Weerd, Hendrik ArnoldLubovac-Pilav, Zelmina

Sök vidare i DiVA

Av författaren/redaktören
de Weerd, Hendrik ArnoldLubovac-Pilav, Zelmina
Av organisationen
Institutionen för biovetenskapForskningscentrum för Systembiologi
I samma tidskrift
BMC Bioinformatics
Bioinformatik och systembiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 32 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 155 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf