his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Integrating experimental and distribution data to predict future species patterns
Estonian Marine Institute, University of Tartu, Tallinn, Estonia.ORCID-id: 0000-0002-4970-6755
Department of Mathematics and Statistics and Organismal and Evolutionary Biology Research Program, University of Helsinki, Helsinki, Finland.
Estonian Marine Institute, University of Tartu, Tallinn, Estonia / Centre for Integrative Ecology, Deakin University, Melbourne, Victoria, Australia.
Estonian Marine Institute, University of Tartu, Tallinn, Estonia.
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, artikel-id 1821Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Predictive species distribution models are mostly based on statistical dependence between environmental and distributional data and therefore may fail to account for physiological limits and biological interactions that are fundamental when modelling species distributions under future climate conditions. Here, we developed a state-of-the-art method integrating biological theory with survey and experimental data in a way that allows us to explicitly model both physical tolerance limits of species and inherent natural variability in regional conditions and thereby improve the reliability of species distribution predictions under future climate conditions. By using a macroalga-herbivore association (Fucus vesiculosus - Idotea balthica) as a case study, we illustrated how salinity reduction and temperature increase under future climate conditions may significantly reduce the occurrence and biomass of these important coastal species. Moreover, we showed that the reduction of herbivore occurrence is linked to reduction of their host macroalgae. Spatial predictive modelling and experimental biology have been traditionally seen as separate fields but stronger interlinkages between these disciplines can improve species distribution projections under climate change. Experiments enable qualitative prior knowledge to be defined and identify cause-effect relationships, and thereby better foresee alterations in ecosystem structure and functioning under future climate conditions that are not necessarily seen in projections based on non-causal statistical relationships alone.

Ort, förlag, år, upplaga, sidor
Nature Publishing Group, 2019. Vol. 9, artikel-id 1821
Nationell ämneskategori
Ekologi
Forskningsämne
Ekologisk modellering
Identifikatorer
URN: urn:nbn:se:his:diva-16667DOI: 10.1038/s41598-018-38416-3ISI: 000458401500024PubMedID: 30755688Scopus ID: 2-s2.0-85061499547OAI: oai:DiVA.org:his-16667DiVA, id: diva2:1292925
Tillgänglig från: 2019-03-01 Skapad: 2019-03-01 Senast uppdaterad: 2019-05-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Leidenberger, Sonja

Sök vidare i DiVA

Av författaren/redaktören
Kotta, JonneJormalainen, VeijoLeidenberger, Sonja
Av organisationen
Institutionen för biovetenskapForskningscentrum för Systembiologi
I samma tidskrift
Scientific Reports
Ekologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 344 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf