his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Characterizing sub-populations of myxoid liposarcoma cells using a multi-algorithmic pipeline for analyzing single-cell RNA sequencing data
Högskolan i Skövde, Institutionen för biovetenskap.
2018 (Engelska)Självständigt arbete på avancerad nivå (magisterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

All tumors are characterized by intratumor heterogeneity at varying degrees. Cancer stem cells have been put forward to be an essential element that promotes heterogeneity. Myxoid liposarcoma, which is a lipogenic cancer that develops in deep soft connective tissues, is characterized by intermediate intratumor heterogeneity. Despite recent therapeutic advances, the post-treatment recurrence rate remains relatively high. Identifying sub-populations of myxoid liposarcoma tumors can help in characterizing their molecular signatures and tumorigenic capabilities leading to developing better therapeutics. Single-cell transcriptomic approaches can highlight deviations in gene expression patterns among different subpopulations within the tumor. In this study, a multi-algorithmic pipeline was developed to make a fast, simple and efficient process for characterizing cellular sub-populations of cancer cells and gain insight about the molecular signature of the cancer stem sub-population. This pipeline consists of four successive steps, read counts’ pre-processing, cellular clustering and pseudotemporal ordering, defining differential expressed genes and defining biomarker genes. The results showed a harmonic integration between the algorithms that constitute the backbone of the proposed pipeline leading to a reduction in the limitations of some of these algorithms. The outcome of this study is a panel of 33 genes nominated as possible biomarkers for stemness and aggressiveness. To optimize and validate these biomarker candidates, further investigations are required. Moreover, additional functional coupling analysis is necessary to nominate biomarkers for each of the sub-populations based on the defined differential expressed genes.

Ort, förlag, år, upplaga, sidor
2018. , s. 40
Nationell ämneskategori
Naturvetenskap
Identifikatorer
URN: urn:nbn:se:his:diva-15837OAI: oai:DiVA.org:his-15837DiVA, id: diva2:1225239
Ämne / kurs
Bioinformatik
Utbildningsprogram
Bioinformatik - magisterprogram
Handledare
Examinatorer
Tillgänglig från: 2018-06-28 Skapad: 2018-06-26 Senast uppdaterad: 2018-06-28Bibliografiskt granskad

Open Access i DiVA

Salim Ghannoum Master Thesis(3005 kB)12 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3005 kBChecksumma SHA-512
29b1497581aaed7dec33fab5ff42febcc4c0ee61d5b12328c53181bc92da5b9300e58cca0471a68e253c68f7ea6570d8c3f6b77f9d687e6baec6aa30111de254
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för biovetenskap
Naturvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 12 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 215 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf