his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
HRC implementation in laboratory environment: Development of a HRC demonstrator
Högskolan i Skövde, Institutionen för ingenjörsvetenskap.
2018 (Engelska)Självständigt arbete på avancerad nivå (magisterexamen), 15 poäng / 22,5 hpStudentuppsats (Examensarbete)
Abstract [en]

Eurofins is one of the world's largest laboratories which, among other things, offer chemical and microbiological analyses in agriculture, food and environment. Several 100.000 tests of various foods are executed each year at Eurofins’ facility in Jönköping and the current processes include much repeated manual tasks which could cause ergonomic problems. The company therefore wants to investigate the possibilities of utilizing Human-Robot Collaboration (HRC) at their facility. Human-Robot Collaboration is a growing concept that has made a big impression in both robot development and Industry 4.0. A HRC approach allow humans and robots to share their workspaces and work side by side, without being separated by a protective fence which is common among traditional industrial robots. Human-Robot Collaboration is therefore believed to be able to optimize the workflows and relieve human workers from unergonomic tasks.

The overall aim of the research project presented is to help the company to gain a better understanding about the existing HRC technologies. To achieve this goal, the state-of-the-art of HRC had to be investigated and the needs, possibilities and limitations of HRC applications had to be identified at Eurofins’ facility. Once these have been addressed, a demonstrator could be built which could be used for evaluating the applicability and suitability of HRC at Eurofins.

The research project presented used the design science research process. The state-of-the-art of HRC was studied in a comprehensive literature review, reviewing sterile robots and mobile robotics as well. The presented literature review could identify possible research gaps in both HRC in laboratory environments and mobile solutions for HRC applications. These areas studied in the literature review formed together the basis of the prepared observations and interviews, used to generate the necessary data to develop the design science research artefact, the demonstrator.

ABB's software for robotic simulation and offline programming, RobotStudio, were used in the development of the demonstrator, with the collaborative robot YuMi chosen for the HRC implementation. The demonstrator presented in the research project has been built, tested and refined in accordance to the design science research process. When the demonstrator could illustrate an applicable solution, it was evaluated for its performance and quality using a mixed methods approach.

Limitations were identified in both the performance and quality of the demonstrator's illustrated HRC implementation, including adaptability and sterility constraints. The research project presented could conclude that a HRC application would be possible at a station which were of interest by the company, but would however not be recommended due to the identified constraints. Instead, the company were recommended to look for stations which are more standardized and have less hygienic requirements. By the end of the research project, additional knowledge was contributed to the company, including how HRC can affect today's working methods at Eurofins and in laboratory environments in general.

Ort, förlag, år, upplaga, sidor
2018. , s. 48
Nyckelord [en]
Demonstrator, dual arm robot, human-robot collaboration, laboratory environments
Nationell ämneskategori
Robotteknik och automation
Identifikatorer
URN: urn:nbn:se:his:diva-15798OAI: oai:DiVA.org:his-15798DiVA, id: diva2:1222854
Externt samarbete
Eurofins Food & Feed Testing Sweden AB
Ämne / kurs
Automatiseringsteknik
Utbildningsprogram
Industriell systemteknik - magisterprogram
Handledare
Examinatorer
Tillgänglig från: 2018-07-03 Skapad: 2018-06-23 Senast uppdaterad: 2018-07-03Bibliografiskt granskad

Open Access i DiVA

fulltext(1444 kB)355 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1444 kBChecksumma SHA-512
8b64f8b9471dea26bfdd69762aa4edb7ec9f1f538ef07a88a980b08e04edb7060c1647cd5adc931064f3d699316a44efe328777fa93a0dd2310763169f13da88
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Boberg, Arvid
Av organisationen
Institutionen för ingenjörsvetenskap
Robotteknik och automation

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 355 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 1078 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf