his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A data analysis framework for biomedical big data: Application on mesoderm differentiation of human pluripotent stem cells
Högskolan i Skövde, Institutionen för biovetenskap. Högskolan i Skövde, Forskningscentrum för Systembiologi. (Bioinformatik, Bioinformatics)ORCID-id: 0000-0001-9242-4852
Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (Skövde Artificial Intelligence Lab (SAIL))ORCID-id: 0000-0003-2973-3112
Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (Skövde Artificial Intelligence Lab (SAIL))ORCID-id: 0000-0003-2900-9335
Takara Bio Europe AB, Gothenburg, Sweden.
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 12, nr 6, artikel-id e0179613Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The development of high-throughput biomolecular technologies has resulted in generation of vast omics data at an unprecedented rate. This is transforming biomedical research into a big data discipline, where the main challenges relate to the analysis and interpretation of data into new biological knowledge. The aim of this study was to develop a framework for biomedical big data analytics, and apply it for analyzing transcriptomics time series data from early differentiation of human pluripotent stem cells towards the mesoderm and cardiac lineages. To this end, transcriptome profiling by microarray was performed on differentiating human pluripotent stem cells sampled at eleven consecutive days. The gene expression data was analyzed using the five-stage analysis framework proposed in this study, including data preparation, exploratory data analysis, confirmatory analysis, biological knowledge discovery, and visualization of the results. Clustering analysis revealed several distinct expression profiles during differentiation. Genes with an early transient response were strongly related to embryonic-and mesendoderm development, for example CER1 and NODAL. Pluripotency genes, such as NANOG and SOX2, exhibited substantial downregulation shortly after onset of differentiation. Rapid induction of genes related to metal ion response, cardiac tissue development, and muscle contraction were observed around day five and six. Several transcription factors were identified as potential regulators of these processes, e.g. POU1F1, TCF4 and TBP for muscle contraction genes. Pathway analysis revealed temporal activity of several signaling pathways, for example the inhibition of WNT signaling on day 2 and its reactivation on day 4. This study provides a comprehensive characterization of biological events and key regulators of the early differentiation of human pluripotent stem cells towards the mesoderm and cardiac lineages. The proposed analysis framework can be used to structure data analysis in future research, both in stem cell differentiation, and more generally, in biomedical big data analytics.

Ort, förlag, år, upplaga, sidor
Public Library of Science , 2017. Vol. 12, nr 6, artikel-id e0179613
Nationell ämneskategori
Bioinformatik och systembiologi Bioinformatik (beräkningsbiologi)
Forskningsämne
Bioinformatik; Skövde Artificial Intelligence Lab (SAIL); INF301 Data Science; INF501 Integrering av -omicsdata
Identifikatorer
URN: urn:nbn:se:his:diva-14015DOI: 10.1371/journal.pone.0179613ISI: 000404541500020PubMedID: 28654683Scopus ID: 2-s2.0-85021324072OAI: oai:DiVA.org:his-14015DiVA, id: diva2:1134983
Tillgänglig från: 2017-08-22 Skapad: 2017-08-22 Senast uppdaterad: 2019-11-18Bibliografiskt granskad

Open Access i DiVA

fulltext(8157 kB)97 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 8157 kBChecksumma SHA-512
f8fb2e5c02f62219c7db9e92124703f65d0a5aaa88c7c3089d92927367096968b95b0f9bb938e915fdb0b9afd7435967d57b4593a502580864f31091dd94c7bb
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopushttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179613

Personposter BETA

Ulfenborg, BenjaminKarlsson, AlexanderRiveiro, MariaSartipy, PeterSynnergren, Jane

Sök vidare i DiVA

Av författaren/redaktören
Ulfenborg, BenjaminKarlsson, AlexanderRiveiro, MariaSartipy, PeterSynnergren, Jane
Av organisationen
Institutionen för biovetenskapForskningscentrum för SystembiologiInstitutionen för informationsteknologiForskningscentrum för Informationsteknologi
I samma tidskrift
PLoS ONE
Bioinformatik och systembiologiBioinformatik (beräkningsbiologi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 97 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 772 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf