his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A data analysis framework for biomedical big data: Application on mesoderm differentiation of human pluripotent stem cells
Högskolan i Skövde, Institutionen för biovetenskap. Högskolan i Skövde, Forskningscentrum för Systembiologi. (Bioinformatik, Bioinformatics)ORCID-id: 0000-0001-9242-4852
Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (Skövde Artificial Intelligence Lab (SAIL))ORCID-id: 0000-0003-2973-3112
Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (Skövde Artificial Intelligence Lab (SAIL))ORCID-id: 0000-0003-2900-9335
Takara Bio Europe AB, Gothenburg, Sweden.
Vise andre og tillknytning
2017 (engelsk)Inngår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 12, nr 6, artikkel-id e0179613Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The development of high-throughput biomolecular technologies has resulted in generation of vast omics data at an unprecedented rate. This is transforming biomedical research into a big data discipline, where the main challenges relate to the analysis and interpretation of data into new biological knowledge. The aim of this study was to develop a framework for biomedical big data analytics, and apply it for analyzing transcriptomics time series data from early differentiation of human pluripotent stem cells towards the mesoderm and cardiac lineages. To this end, transcriptome profiling by microarray was performed on differentiating human pluripotent stem cells sampled at eleven consecutive days. The gene expression data was analyzed using the five-stage analysis framework proposed in this study, including data preparation, exploratory data analysis, confirmatory analysis, biological knowledge discovery, and visualization of the results. Clustering analysis revealed several distinct expression profiles during differentiation. Genes with an early transient response were strongly related to embryonic-and mesendoderm development, for example CER1 and NODAL. Pluripotency genes, such as NANOG and SOX2, exhibited substantial downregulation shortly after onset of differentiation. Rapid induction of genes related to metal ion response, cardiac tissue development, and muscle contraction were observed around day five and six. Several transcription factors were identified as potential regulators of these processes, e.g. POU1F1, TCF4 and TBP for muscle contraction genes. Pathway analysis revealed temporal activity of several signaling pathways, for example the inhibition of WNT signaling on day 2 and its reactivation on day 4. This study provides a comprehensive characterization of biological events and key regulators of the early differentiation of human pluripotent stem cells towards the mesoderm and cardiac lineages. The proposed analysis framework can be used to structure data analysis in future research, both in stem cell differentiation, and more generally, in biomedical big data analytics.

sted, utgiver, år, opplag, sider
2017. Vol. 12, nr 6, artikkel-id e0179613
HSV kategori
Forskningsprogram
Bioinformatik; Skövde Artificial Intelligence Lab (SAIL); INF301 Data Science; INF501 Integrering av -omicsdata
Identifikatorer
URN: urn:nbn:se:his:diva-14015DOI: 10.1371/journal.pone.0179613ISI: 000404541500020PubMedID: 28654683Scopus ID: 2-s2.0-85021324072OAI: oai:DiVA.org:his-14015DiVA, id: diva2:1134983
Tilgjengelig fra: 2017-08-22 Laget: 2017-08-22 Sist oppdatert: 2018-11-16bibliografisk kontrollert

Open Access i DiVA

fulltext(8157 kB)88 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 8157 kBChecksum SHA-512
f8fb2e5c02f62219c7db9e92124703f65d0a5aaa88c7c3089d92927367096968b95b0f9bb938e915fdb0b9afd7435967d57b4593a502580864f31091dd94c7bb
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMedScopushttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179613

Personposter BETA

Ulfenborg, BenjaminKarlsson, AlexanderRiveiro, MariaSartipy, PeterSynnergren, Jane

Søk i DiVA

Av forfatter/redaktør
Ulfenborg, BenjaminKarlsson, AlexanderRiveiro, MariaSartipy, PeterSynnergren, Jane
Av organisasjonen
I samme tidsskrift
PLoS ONE

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 88 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 683 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf