his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Understanding Indirect Causal Relationships in Node-Link Graphs
Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (Skövde Artificial Intelligence Lab (SAIL))
Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (Skövde Artificial Intelligence Lab (SAIL))ORCID-id: 0000-0001-6245-5850
Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (Skövde Artificial Intelligence Lab (SAIL))ORCID-id: 0000-0003-2900-9335
2017 (engelsk)Inngår i: Computer graphics forum (Print), ISSN 0167-7055, E-ISSN 1467-8659, Vol. 36, nr 3, s. 411-421Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

To find correlations and cause and effect relationships in multivariate data sets is central in many data analysis problems. A common way of representing causal relations among variables is to use node-link diagrams, where nodes depict variables and edges show relationships between them. When performing a causal analysis, analysts may be biased by the position of collected evidences, especially when they are at the top of a list. This is of crucial importance since finding a root cause or a derived effect, and searching for causal chains of inferences are essential analytic tasks when investigating causal relationships. In this paper, we examine whether sequential ordering influences understanding of indirect causal relationships and whether it improves readability of multi-attribute causal diagrams. Moreover, we see how people reason to identify a root cause or a derived effect. The results of our design study show that sequential ordering does not play a crucial role when analyzing causal relationships, but many connections from/to a variable and higher strength/certainty values may influence the process of finding a root cause and a derived effect.

sted, utgiver, år, opplag, sider
2017. Vol. 36, nr 3, s. 411-421
HSV kategori
Forskningsprogram
Skövde Artificial Intelligence Lab (SAIL); INF301 Data Science
Identifikatorer
URN: urn:nbn:se:his:diva-13970DOI: 10.1111/cgf.13198ISI: 000404881200038Scopus ID: 2-s2.0-85022207775OAI: oai:DiVA.org:his-13970DiVA, id: diva2:1130540
Konferanse
19th Eurographics/IEEE VGTC Conference on Visualization (EuroVis), JUN 12-16, 2017, Barcelona, SPAIN
Tilgjengelig fra: 2017-08-10 Laget: 2017-08-10 Sist oppdatert: 2018-06-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Bae, JuheeHelldin, ToveRiveiro, Maria

Søk i DiVA

Av forfatter/redaktør
Bae, JuheeHelldin, ToveRiveiro, Maria
Av organisasjonen
I samme tidsskrift
Computer graphics forum (Print)

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 395 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf