his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Generalization-Based k-Anonymization
CSIC - Spanish Council for Scientific Research, IIIA - Artificial Intelligence Research Institute, Bellaterra, Spain.
Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (Skövde Artificial Intelligence Lab (SAIL))ORCID-id: 0000-0002-0368-8037
2015 (engelsk)Inngår i: Modeling Decisions for Artificial Intelligence: 12th International Conference, MDAI 2015, Skövde, Sweden, September 21–23, 2015: Proceedings / [ed] Vicenç Torra & Yasuo Narukawa, Springer, 2015, s. 207-218Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Microaggregation is an anonymization technique consistingon partitioning the data into clusters no smaller thankelements andthen replacing the whole cluster by its prototypical representant. Mostof microaggregation techniques work on numerical attributes. However,many data sets are described by heterogeneous types of data, i.e., nu-merical and categorical attributes. In this paper we propose a new mi-croaggregation method for achieving a compliantk-anonymous maskedfile for categorical microdata based on generalization. The goal is to builda generalized description satisfied by at leastkdomain objects and toreplace these domain objects by the description. The way to constructthat generalization is similar that the one used in growing decision trees.Records that cannot be generalized satisfactorily are discarded, thereforesome information is lost. In the experiments we performed we prove thatthe new approach gives good results.

sted, utgiver, år, opplag, sider
Springer, 2015. s. 207-218
Serie
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 9321
Emneord [en]
k-anonymity, Generalization
HSV kategori
Forskningsprogram
Skövde Artificial Intelligence Lab (SAIL)
Identifikatorer
URN: urn:nbn:se:his:diva-13358DOI: 10.1007/978-3-319-23240-9_17Scopus ID: 2-s2.0-84945545104ISBN: 978-3-319-23239-3 (tryckt)ISBN: 978-3-319-23240-9 (digital)OAI: oai:DiVA.org:his-13358DiVA, id: diva2:1071374
Konferanse
12th International Conference, MDAI 2015, Skövde, Sweden, September 21–23, 2015
Tilgjengelig fra: 2017-02-04 Laget: 2017-02-04 Sist oppdatert: 2018-03-28bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Torra, Vicenç

Søk i DiVA

Av forfatter/redaktør
Torra, Vicenç
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 569 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf