his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Data mining methods for knowledge discovery in multi-objective optimization: Part A - Survey
Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system. (Produktion och automatiseringsteknik, Production and Automation Engineering)ORCID-id: 0000-0001-5436-2128
Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system. (Produktion och automatiseringsteknik, Production and Automation Engineering)ORCID-id: 0000-0003-0111-1776
Department of Electrical and Computer Engineering, Michigan State University, USA.ORCID-id: 0000-0001-7402-9939
2017 (engelsk)Inngår i: Expert systems with applications, ISSN 0957-4174, E-ISSN 1873-6793, Vol. 70, s. 139-159Artikkel, forskningsoversikt (Fagfellevurdert) Published
Abstract [en]

Real-world optimization problems typically involve multiple objectives to be optimized simultaneously under multiple constraints and with respect to several variables. While multi-objective optimization itself can be a challenging task, equally difficult is the ability to make sense of the obtained solutions. In this two-part paper, we deal with data mining methods that can be applied to extract knowledge about multi-objective optimization problems from the solutions generated during optimization. This knowledge is expected to provide deeper insights about the problem to the decision maker, in addition to assisting the optimization process in future design iterations through an expert system. The current paper surveys several existing data mining methods and classifies them by methodology and type of knowledge discovered. Most of these methods come from the domain of exploratory data analysis and can be applied to any multivariate data. We specifically look at methods that can generate explicit knowledge in a machine-usable form. A framework for knowledge-driven optimization is proposed, which involves both online and offline elements of knowledge discovery. One of the conclusions of this survey is that while there are a number of data mining methods that can deal with data involving continuous variables, only a few ad hoc methods exist that can provide explicit knowledge when the variables involved are of a discrete nature. Part B of this paper proposes new techniques that can be used with such datasets and applies them to discrete variable multi-objective problems related to production systems. 

sted, utgiver, år, opplag, sider
2017. Vol. 70, s. 139-159
Emneord [en]
Data mining, Multi-objective optimization, Descriptive statistics, Visual data mining, Machine learning, Knowledge-driven optimization
HSV kategori
Forskningsprogram
Teknik; Produktion och automatiseringsteknik; INF201 Virtual Production Development
Identifikatorer
URN: urn:nbn:se:his:diva-13267DOI: 10.1016/j.eswa.2016.10.015ISI: 000389162000009Scopus ID: 2-s2.0-84995972531OAI: oai:DiVA.org:his-13267DiVA, id: diva2:1060702
Prosjekter
KDISCO and Knowledge Driven Decision Support via Optimization (KDDS)
Forskningsfinansiär
Knowledge Foundation, 41231Tilgjengelig fra: 2016-12-29 Laget: 2016-12-29 Sist oppdatert: 2019-01-24bibliografisk kontrollert

Open Access i DiVA

fulltext(1969 kB)66 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1969 kBChecksum SHA-512
2fa337c26177d2a624a792104ebb9a8dfd3404767566d3161812be6c326a93aa723807d6d810ad2644d3838ffabcfe97fb60e46dc96e996a507e4769376cded9
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Bandaru, SunithNg, Amos H. C.Deb, Kalyanmoy

Søk i DiVA

Av forfatter/redaktør
Bandaru, SunithNg, Amos H. C.Deb, Kalyanmoy
Av organisasjonen
I samme tidsskrift
Expert systems with applications

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 66 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 1230 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf