his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improving the characterization of P-stability for applications in network privacy
Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili, Tarragona, Spain.
Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (Skövde Artificial Intelligence Lab (SAIL))ORCID-id: 0000-0002-0368-8037
2016 (Engelska)Ingår i: Discrete Applied Mathematics, ISSN 0166-218X, E-ISSN 1872-6771, Vol. 206, s. 109-114Artikel i tidskrift (Refereegranskat) Published
Resurstyp
Text
Abstract [en]

Recently, we have found that the concept of P-stability has interesting applications in network privacy. In the context of Online Social Networks it may be used for obtaining a fully polynomial randomized approximation scheme for graph masking and measuring disclosure risk. Also by using the characterization for P-stable sequences from Jerrum, McKay and Sinclair (1992) it is possible to obtain optimal approximations for the problem of k-degree anonymity. In this paper, we present results on P-stability considering the additional restriction that the degree sequence must not intersect the edges of an excluded graph X, improving earlier results on P-stability. As a consequence we extend the P-stable classes of scale-free networks from Torra et al. (2015), obtain an optimal solution for k-anonymity and prove that all the known conditions for P-stability are sufficient for sequences to be graphic. (C) 2016 Elsevier B.V. All rights reserved.

Ort, förlag, år, upplaga, sidor
Elsevier, 2016. Vol. 206, s. 109-114
Nyckelord [en]
P-stability, k-anonymity, Graphic sequence, Degree sequence, FPRAS, Rapidly mixing Markov chain, Fully polynomial-time randomized approximation scheme
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Skövde Artificial Intelligence Lab (SAIL)
Identifikatorer
URN: urn:nbn:se:his:diva-12568DOI: 10.1016/j.dam.2016.01.025ISI: 000376542600012Scopus ID: 2-s2.0-84994589863OAI: oai:DiVA.org:his-12568DiVA, id: diva2:941565
Tillgänglig från: 2016-06-22 Skapad: 2016-06-22 Senast uppdaterad: 2018-03-28Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Torra, Vicenç

Sök vidare i DiVA

Av författaren/redaktören
Torra, Vicenç
Av organisationen
Institutionen för informationsteknologiForskningscentrum för Informationsteknologi
I samma tidskrift
Discrete Applied Mathematics
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 213 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf