his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Big data in maintenance decision support systems: aggregation of disparate data types
Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system. (Produktion och Automatiseringsteknik, Production and Automation Engineering)ORCID-id: 0000-0002-8906-630X
Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system. Luleå University of Technology, Luleå, Sweden. (Produktion och Automatiseringsteknik, Production and Automation Engineering)ORCID-id: 0000-0002-4107-0991
Högskolan i Skövde, Forskningscentrum för Virtuella system. Högskolan i Skövde, Institutionen för ingenjörsvetenskap. KTH Royal Institute of Technology, Stockholm, Sweden. (Produktion och Automatiseringsteknik, Production and Automation Engineering)ORCID-id: 0000-0001-8679-8049
2016 (Engelska)Ingår i: Euromaintenance 2016 ConferenceProceedings, 2016, s. 503-512Konferensbidrag, Publicerat paper (Övrigt vetenskapligt)
Abstract [en]

There is need to obtain reliable information on current and future asset health status to support maintenance decision making process. Within maintenance two main sources of data can be distinguished: Computerized Maintenance Management System (CMMS) for asset registry and maintenance work records; and Condition Monitoring Systems (CM) for direct asset components health state monitoring. There are also other sources of information like SCADA (Supervisory Control and Data Acquisition) for process and control monitoring that can provide additional contextual information leading to better decision making. However data produced acquired and processed and in those system are of disparate types, nature and granularity. This variety includes: event data about failures or performed maintenance work mostly descriptions in unstructured natural language; process variables obtained from different types of sensors and different physical variables from transducers, acquired with different sampling frequencies. Indeed, condition monitoring data are so disparate in nature that maintainers deal with scalars (temperature) through waveforms (vibration) to 2D thermography images and 3D data from machine geometry measuring. Integration and aggregation of those data is not a trivial task and requires modelling of knowledge about those data types, their mutual dependencies and dependencies with monitored processes. There are some attempts of standardisation that try to enable integration of CBM data from different sources. The conversion of those amount of data in meaningful data sets is required for better machine health assessment and tracking within the specific operational context for the asset. This will also enhance the maintenance decision support system with information on how different operational condition can affect the reliability of the asset for concrete contextual circumstances.

Ort, förlag, år, upplaga, sidor
2016. s. 503-512
Nyckelord [en]
Big Data, Context-awareness, Maintenance Decision Support System
Nationell ämneskategori
Tillförlitlighets- och kvalitetsteknik
Forskningsämne
Teknik; Produktion och automatiseringsteknik
Identifikatorer
URN: urn:nbn:se:his:diva-12332ISBN: 978-618-82601-0-8 (tryckt)OAI: oai:DiVA.org:his-12332DiVA, id: diva2:933625
Konferens
Euromaintenance 2016, Athens, 30 May-1 June, 2016
Tillgänglig från: 2016-06-07 Skapad: 2016-06-07 Senast uppdaterad: 2018-03-28Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Schmidt, BernardGalar, DiegoWang, Lihui

Sök vidare i DiVA

Av författaren/redaktören
Schmidt, BernardGalar, DiegoWang, Lihui
Av organisationen
Institutionen för ingenjörsvetenskapForskningscentrum för Virtuella system
Tillförlitlighets- och kvalitetsteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 2250 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf