his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Models of Influence in Online Social Networks
UAE University, United Arab Emirates.
UAE University, United Arab Emirates.ORCID-id: 0000-0002-7312-9089
VSB-Technical University of Ostrava, Czech Republic.
2014 (Engelska)Ingår i: International Journal of Intelligent Systems, ISSN 0884-8173, E-ISSN 1098-111X, Vol. 2, nr 29, s. 161-183Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Online social networks gained their popularity from relationships users can build with each other. These social ties play an important role in asserting users’ behaviors in a social network. For example, a user might purchase a product that his friend recently bought. Such phenomenon is called social influence, which is used to study users’ behavior when the action of one user can affect the behavior of his neighbors in a social network. Social influence is increasingly investigated nowadays as it can help spreading messages widely, particularly in the context of marketing, to rapidly promote products and services based on social friends’ behavior in the network. This wide interest in social influence raises the need to develop models to evaluate the rate of social influence. In this paper, we discuss metrics used to measure influence probabilities. Then, we reveal means to maximize social influence by identifying and using the most influential users in a social network. Along with these contributions, we also survey existing social influence models, and classify them into an original categorization framework. Then, based on our proposed metrics, we show the results of an experimental evaluation to compare the influence power of some of the surveyed salient models used to maximize social influence.

Ort, förlag, år, upplaga, sidor
USA: John Wiley & Sons, 2014. Vol. 2, nr 29, s. 161-183
Nyckelord [en]
Social networks, influence propagation, clustering algorithm community detection
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:his:diva-11911DOI: 10.1002/int.21631OAI: oai:DiVA.org:his-11911DiVA, id: diva2:902645
Tillgänglig från: 2016-02-11 Skapad: 2016-02-11 Senast uppdaterad: 2018-01-10Bibliografiskt granskad

Open Access i DiVA

fulltext(1203 kB)390 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1203 kBChecksumma SHA-512
de4db0a8f859fc2215e6fcc872a79ff440750838559895417085d96dca1c14f45de1023d749f874c0966d90d906e144e61e9101ae153450e9e6546fbee30438a
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextWiley

Personposter BETA

Atif, Yacine

Sök vidare i DiVA

Av författaren/redaktören
Atif, Yacine
I samma tidskrift
International Journal of Intelligent Systems
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 390 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 1104 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf