Högskolan i Skövde

his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Unsupervised Imitation In Evolved Robots
Högskolan i Skövde, Institutionen för kommunikation och information.
2005 (Engelska)Självständigt arbete på avancerad nivå (magisterexamen)Studentuppsats
Abstract [en]

Imitation learning has been studied from a large range of disciplines, including adaptive robotics. In adaptive robotics the focus is often on how robots can learn tasks by imitating experts. In order to build robots able to imitate a number of problems must be solved, including: How does the robot know when and what to imitate? How does the robot link the recognition of observed actions to the execution of the same actions? This thesis presents an approach using unsupervised imitation where artificial evolution is used to find solutions to the problems. The approach is tested in a number of experiments where robots are being evolved to solve a number of navigation tasks of varying difficulty. Two sets of experiments are made for each task. In the first set the robots are trained without any demonstrator present. The second set is identical to the first one except for the presence of a demonstrator. The demonstrator is present in the beginning of the training and thereafter removed. The robots are not being programmed to imitate the demonstrator but are only instructed to solve the navigation tasks. By comparing the performance of the robots of the two sets the impact of the demonstrator is investigated. The results show that the robots evolved with a demonstrator need less training time than the robots evolved without any demonstrator except when the task is easy to solve in which case the demonstrator seems to have no effect on the performance of the robots. It is concluded that evolved robots are able to imitate demonstrators even if the robots are not explicitly programmed to follow the demonstrators.

Ort, förlag, år, upplaga, sidor
Skövde: Institutionen för kommunikation och information , 2005. , s. 38
Nyckelord [en]
artificial Intelligence, Evolutionary Algorithms
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:his:diva-976OAI: oai:DiVA.org:his-976DiVA, id: diva2:3402
Presentation
(Engelska)
Uppsök
teknik
Handledare
Tillgänglig från: 2008-03-19 Skapad: 2008-03-19 Senast uppdaterad: 2018-01-12

Open Access i DiVA

fulltext(19578 kB)497 nedladdningar
Filinformation
Filnamn FULLTEXT01.psFilstorlek 19578 kBChecksumma SHA-1
b07251f3888662815f178127109fe67e0b01b37a440a84908fe03caf81c5b4675b1c05bb
Typ fulltextMimetyp application/postscript
fulltext(215 kB)176 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 215 kBChecksumma SHA-512
e10dd3d026949b2e1dcb456a3f02891815d294beeb03fcde7f301a583aed69fd26cb67f3d64a6a20fd4ae724e4db8fb54ba87a939c6809103a014731a659afd2
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för kommunikation och information
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 673 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 339 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf