his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automatically Balancing Accuracy and Comprehensibility in Predictive Modeling
School of Business and Informatics, University of Borås, Sweden.
School of Business and Informatics, University of Borås, Sweden.
Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
2005 (Engelska)Ingår i: 2005 8th International Conference on Information Fusion (FUSION) Philadelphia, PA 25-28 July 2005: Volume 2 of 2, IEEE conference proceedings, 2005, s. 1554-1560Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

One specific problem, when performing predictive modeling, is the tradeoff between accuracy and comprehensibility. When comprehensible models are required this normally rules out high-accuracy techniques like neural networks and committee machines. Therefore, an automated choice of a standard technique, known to generally produce sufficiently accurate and comprehensible models, would be of great value. In this paper it is argued that this requirement is met by an ensemble of classifiers, followed by rule extraction. The proposed technique is demonstrated, using an ensemble of common classifiers and our rule extraction algorithm G-REX, on 17 publicly available data sets. The results presented demonstrate that the suggested technique performs very well. More specifically, the ensemble clearly outperforms the individual classifiers regarding accuracy, while the extracted models have accuracy similar to the individual classifiers. The extracted models are, however, significantly more compact than corresponding models created directly from the data set using he standard tool CART; thus providing higher comprehensibility.

Ort, förlag, år, upplaga, sidor
IEEE conference proceedings, 2005. s. 1554-1560
Identifikatorer
URN: urn:nbn:se:his:diva-2130DOI: 10.1109/ICIF.2005.1592040ISI: 000234830400207Scopus ID: 2-s2.0-33847128033ISBN: 0-7803-9287-6 ISBN: 0-7803-9286-8 ISBN: 978-07803-9286-1 OAI: oai:DiVA.org:his-2130DiVA, id: diva2:32406
Konferens
2005 8th International Conference on Information Fusion, FUSION; Philadelphia, PA; 25 July 2005 through 28 July 2005
Tillgänglig från: 2008-02-08 Skapad: 2008-02-08 Senast uppdaterad: 2017-11-27Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopushttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1592040

Personposter BETA

Niklasson, Lars

Sök vidare i DiVA

Av författaren/redaktören
Niklasson, Lars
Av organisationen
Institutionen för kommunikation och informationForskningscentrum för Informationsteknologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 478 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf