Högskolan i Skövde

his.sePublikationer
Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Deriving pathway maps from automated text analysis using a grammar-based approach
Högskolan i Skövde, Institutionen för kommunikation och information.ORCID-id: 0000-0001-6254-4335
Högskolan i Skövde, Institutionen för kommunikation och information.ORCID-id: 0000-0001-6233-8996
Högskolan i Skövde, Institutionen för kommunikation och information.
2006 (Engelska)Ingår i: Journal of Bioinformatics and Computational Biology, ISSN 0219-7200, E-ISSN 1757-6334, Vol. 4, nr 2, s. 483-501Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We demonstrate how automated text analysis can be used to support the large-scale analysis of metabolic and regulatory pathways by deriving pathway maps from textual descriptions found in the scientific literature. The main assumption is that correct syntactic analysis combined with domain-specific heuristics provides a good basis for relation extraction. Our method uses an algorithm that searches through the syntactic trees produced by a parser based on a Referent Grammar formalism, identifies relations mentioned in the sentence, and classifies them with respect to their semantic class and epistemic status (facts, counterfactuals, hypotheses). The semantic categories used in the classification are based on the relation set used in KEGG (Kyoto Encyclopedia of Genes and Genomes), so that pathway maps using KEGG notation can be automatically generated. We present the current version of the relation extraction algorithm and an evaluation based on a corpus of abstracts obtained from PubMed. The results indicate that the method is able to combine a reasonable coverage with high accuracy. We found that 61% of all sentences were parsed, and 97% of the parse trees were judged to be correct. The extraction algorithm was tested on a sample of 300 parse trees and was found to produce correct extractions in 90.5% of the cases.

Ort, förlag, år, upplaga, sidor
World Scientific, 2006. Vol. 4, nr 2, s. 483-501
Identifikatorer
URN: urn:nbn:se:his:diva-1858DOI: 10.1142/S0219720006002041Scopus ID: 2-s2.0-33745684308OAI: oai:DiVA.org:his-1858DiVA, id: diva2:32134
Tillgänglig från: 2007-09-12 Skapad: 2007-09-12 Senast uppdaterad: 2020-10-29Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Olsson, BjörnGawronska, BarbaraErlendsson, Björn

Sök vidare i DiVA

Av författaren/redaktören
Olsson, BjörnGawronska, BarbaraErlendsson, Björn
Av organisationen
Institutionen för kommunikation och information
I samma tidskrift
Journal of Bioinformatics and Computational Biology

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 957 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf