Högskolan i Skövde

his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Building Neural Network Ensembles using Genetic Programming
School of Business and Informatics, University of Borås, Sweden.
School of Business and Informatics, University of Borås, Sweden.
School of Business and Informatics, University of Borås, Sweden.
Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (Skövde Cognition and Artificial Intelligence Lab (SCAI))
2006 (Engelska)Ingår i: The 2006 IEEE International Joint Conference on Neural Network Proceedings, IEEE, 2006, s. 1260-1265Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In this paper we present and evaluate a novel algorithm for ensemble creation. The main idea of the algorithm is to first independently train a fixed number of neural networks (here ten) and then use genetic programming to combine these networks into an ensemble. The use of genetic programming makes it possible to not only consider ensembles of different sizes, but also to use ensembles as intermediate building blocks. The final result is therefore more correctly described as an ensemble of neural network ensembles. The experiments show that the proposed method, when evaluated on 22 publicly available data sets, obtains very high accuracy, clearly outperforming the other methods evaluated. In this study several micro techniques are used, and we believe that they all contribute to the increased performance. One such micro technique, aimed at reducing overtraining, is the training method, called tombola training, used during genetic evolution. When using tombola training, training data is regularly resampled into new parts, called training groups. Each ensemble is then evaluated on every training group and the actual fitness is determined solely from the result on the hardest part.

Ort, förlag, år, upplaga, sidor
IEEE, 2006. s. 1260-1265
Serie
Proceedings of the International Joint Conference on Neural Networks, ISSN 2161-4393, E-ISSN 2161-4407
Nationell ämneskategori
Datavetenskap (datalogi) Systemvetenskap, informationssystem och informatik
Identifikatorer
URN: urn:nbn:se:his:diva-1806DOI: 10.1109/IJCNN.2006.246836ISI: 000245125902029Scopus ID: 2-s2.0-38049049329ISBN: 0-7803-9490-9 (tryckt)ISBN: 978-0-7803-9490-2 (tryckt)OAI: oai:DiVA.org:his-1806DiVA, id: diva2:32082
Konferens
International Joint Conference on Neural Networks 2006, IJCNN '06, Vancouver, BC, 16 July 2006 through 21 July 2006
Tillgänglig från: 2007-10-10 Skapad: 2007-10-10 Senast uppdaterad: 2021-04-22Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Löfström, TuveKönig, RikardNiklasson, Lars

Sök vidare i DiVA

Av författaren/redaktören
Löfström, TuveKönig, RikardNiklasson, Lars
Av organisationen
Institutionen för kommunikation och informationForskningscentrum för Informationsteknologi
Datavetenskap (datalogi)Systemvetenskap, informationssystem och informatik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 565 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf