Today one of the greatest aims within the area of bioinformatics is to gain a complete understanding of the functionality of genes and the systems behind gene regulation. Regulatory relationships among genes seem to be of a complex nature since transcriptional control is the result of complex networks interpreting a variety of inputs. It is therefore essential to develop analytical tools detecting complex genetic relationships.
This project examines the possibility of the data mining technique artificial neural network (ANN) detecting regulatory relationships between genes. As an initial step for finding regulatory relationships with the help of ANN the goal of this project is to train an ANN to predict the expression of an individual gene. The genes predicted are the nuclear receptor PPAR-g and the insulin receptor. Predictions of the two target genes respectively were made using different datasets of gene expression data as input for the ANN. The results of the predictions of PPAR-g indicate that it is not possible to predict the expression of PPAR-g under the circumstances for this experiment. The results of the predictions of the insulin receptor indicate that it is not possible to discard using ANN for predicting the gene expression of an individual gene.