Högskolan i Skövde

his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Using Artificial Neural Networks for Admission Control in Firm Real-Time Systems
Högskolan i Skövde, Institutionen för datavetenskap.
2000 (Engelska)Självständigt arbete på grundnivå (kandidatexamen)Studentuppsats
Abstract [en]

Admission controllers in dynamic real-time systems perform traditional schedulability tests in order to determine whether incoming tasks will meet their deadlines. These tests are computationally expensive and typically run in n * log n time where n is the number of tasks in the system. An incoming task might therefore miss its deadline while the schedulability test is being performed, when there is a heavy load on the system. In our work we evaluate a new approach for admission control in firm real-time systems. Our work shows that ANNs can be used to perform a schedulability test in order to work as an admission controller in firm real-time systems. By integrating the ANN admission controller to a real-time simulator we show that our approach provides feasible performance compared to a traditional approach. The ANNs are able to make up to 86% correct admission decisions in our simulations and the computational cost of our ANN schedulability test has a constant value independent of the load of the system. Our results also show that the computational cost of a traditional approach increases as a function of n log n where n is the number of tasks in the system.

Ort, förlag, år, upplaga, sidor
Skövde: Institutionen för datavetenskap , 2000. , s. 47
Nyckelord [en]
Firm Real-Time Systems, Overloads, Artificial Neural Networks, Admission Controller.
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:his:diva-412OAI: oai:DiVA.org:his-412DiVA, id: diva2:2784
Presentation
(Engelska)
Uppsök
teknik
Handledare
Tillgänglig från: 2007-12-19 Skapad: 2007-12-19 Senast uppdaterad: 2018-01-12

Open Access i DiVA

fulltext(1832 kB)185 nedladdningar
Filinformation
Filnamn FULLTEXT01.psFilstorlek 1832 kBChecksumma MD5
f2baaef5a1417d080220705c9bdca60f99eba41f9cc467638768665e6f0f71dc6c376980
Typ fulltextMimetyp application/postscript
fulltext(263 kB)226 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 263 kBChecksumma SHA-512
c33078aa0930d9e64ae6ded263fd415e260872ca3823926a1518f5c34fa5f21c54eaa822800abc190a2d9dfe3f6aba46f10de9f2fc13939a3fca114aef9712bd
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för datavetenskap
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 412 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 526 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf