his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Prediction of Protein Mutations Using Artificial Neural Networks
Högskolan i Skövde, Institutionen för datavetenskap.
1999 (Engelska)Självständigt arbete på avancerad nivå (magisterexamen)Studentuppsats
Abstract [en]

This thesis is concerned with the prediction of protein mutations using artificial neural networks. From the biological perspective it is of interest to investigate weather it is possible to find rules of mutation between evolutionary adjacent (or closely related) proteins. Techniques from computer science are used in order to see if it is possible to predict protein mutations i.e. using artificial neural networks. The computer science perspective of this work would be to try optimizing the results from the neural networks. However, the focus of this thesis is primarily on the biological perspective and the performance of the computer science methods are secondary objective i.e. the primary interest is to show the existence of rules for protein mutations.

The method used in this thesis consists two neural networks. One network is used to predict the actual protein mutations and the other network is used to make a compressed representation of each amino acid. By using a compression network it is possible to make the prediction network much smaller (each amino acid is represented by 3 nodes instead of 22 nodes). The compression network is an auto associative network and the prediction network is a standard feed-forward network. The prediction network predicts a block of amino acids at a time and for comparison a sliding window technique has also been tested.

It is my belief that the results in this thesis indicate that there exists rules for protein mutations. However, the tests done in this thesis is only performed on a small portion of all proteins. Some protein families tested show really good results while other families are not as good. I believe that extended work using optimized neural networks would improve the predictions further.

Ort, förlag, år, upplaga, sidor
Skövde: Institutionen för datavetenskap , 1999. , s. 73
Nyckelord [en]
bioinformatics prediction protein mutation ANN
Nationell ämneskategori
Systemvetenskap, informationssystem och informatik
Identifikatorer
URN: urn:nbn:se:his:diva-400OAI: oai:DiVA.org:his-400DiVA, id: diva2:2771
Presentation
(Engelska)
Uppsök
samhälle/juridik
Handledare
Tillgänglig från: 2007-12-19 Skapad: 2007-12-19 Senast uppdaterad: 2018-01-12

Open Access i DiVA

fulltext(1734 kB)275 nedladdningar
Filinformation
Filnamn FULLTEXT01.psFilstorlek 1734 kBChecksumma SHA-1
77f8b5a660513fdee39bec8469140d2c73a3a43763f0817295e15d21887484b0026fe4a2
Typ fulltextMimetyp application/postscript
fulltext(214 kB)457 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 214 kBChecksumma SHA-512
9ac62bc9a591fc37273f84f975bce4b622b296059c740c588e89a827a2df1f9b5ecf2194bf5164cd8cf614e14f53935a47a79719bddc60deec89ff3632b168de
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för datavetenskap
Systemvetenskap, informationssystem och informatik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 732 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 266 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf