his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Anomaly detection in sea traffic - a comparison of the Gaussian Mixture Model and the Kernel Density Estimator
Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. Saab Systems, Saab AB, Järfälla, Sweden. (Skövde Artificial Intelligence Lab (SAIL))
Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (Skövde Artificial Intelligence Lab (SAIL))ORCID-id: 0000-0001-8884-2154
Saab Systems, Saab AB, Järfälla, Sweden.
2009 (Engelska)Ingår i: Proceedings of the 12th International Conference on Information Fusion, ISIF , 2009, s. 756-763Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This paper presents a first attempt to evaluate two previously proposed methods for statistical anomaly detection in sea traffic, namely the Gaussian Mixture Model (GMM) and the adaptive Kernel Density Estimator (KDE). A novel performance measure related to anomaly detection, together with an intermediate performance measure related to normalcy modeling, are proposed and evaluated using recorded AIS data of vessel traffic and

simulated anomalous trajectories. The normalcy modeling evaluation indicates that KDE more accurately captures finer details of normal data. Yet, results from anomaly detection show no significant difference between the two techniques and the performance of both is considered suboptimal. Part of the explanation is that the methods are based on a rather artificial division of data into geographical cells. The paper therefore discusses other clustering approaches based on more informed features of data and more background knowledge regarding the structure and natural classes of the data.

Ort, förlag, år, upplaga, sidor
ISIF , 2009. s. 756-763
Nyckelord [en]
Anomaly detection, sea surveillance, Density estimation, Gaussian Mixturer Model, adaptive Kernel Density Estimation
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Teknik
Identifikatorer
URN: urn:nbn:se:his:diva-3452ISI: 000273560000098Scopus ID: 2-s2.0-70449334343ISBN: 978-0-9824438-0-4 OAI: oai:DiVA.org:his-3452DiVA: diva2:273163
Konferens
Fusion 2009 : the 12th International Conference on Information Fusion : Grand Hyatt Seattle, Seattle, Washington, USA, 6-9 July, 2009
Tillgänglig från: 2009-10-20 Skapad: 2009-10-20 Senast uppdaterad: 2018-01-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Scopushttp://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5173445%2F5203583%2F05203766.pdf%3Farnumber%3D5203766&authDecision=-201

Personposter BETA

Laxhammar, RikardFalkman, Göran

Sök vidare i DiVA

Av författaren/redaktören
Laxhammar, RikardFalkman, Göran
Av organisationen
Institutionen för kommunikation och informationForskningscentrum för Informationsteknologi
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 124 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf