his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improved accuracy of surrogate models using output postprocessing
Högskolan i Skövde, Institutionen för kommunikation och information.
2007 (Engelska)Självständigt arbete på avancerad nivå (magisterexamen), 20 poäng / 30 hpStudentuppsats
Abstract [en]

Using surrogate approximations (e.g. Kriging interpolation or artifical neural networks) is an established technique for decreasing the execution time of simulation optimization problems. However, constructing surrogate approximations can be impossible when facing complex simulation inputs, and instead one is forced to use a surrogate model, which explicitly attempts to simulate the inner workings of the underlying simulation model. This dissertation has investigated if postprocessing the output of a surrogate model with an artificial neural network can increase its accuracy and value in simulation optimization problems. Results indicate that the technique has potential in that when output post-processing was enabled the accuracy of the surrogate model increased, i.e. its output more losely matched the output of the real simulation model. No apparent improvement in optimization performance could be observed however. It was speculated that this was due to either the optimization algorithm used not taking advantage of the improved accuracy of the surrogate model, or the fact the the improved accuracy of the surrogate model was to small to make any measurable impact. Further investigation of these issues must be conducted in order to get a better understanding of the pros and cons of the technique.

Ort, förlag, år, upplaga, sidor
Skövde: Institutionen för kommunikation och information , 2007. , s. 33
Nyckelord [en]
Simulation optimization, Surrogate-assisted simulation optimization, Surrogate approximations, Surrogate models
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:his:diva-312OAI: oai:DiVA.org:his-312DiVA, id: diva2:2675
Presentation
(Engelska)
Uppsök
teknik
Handledare
Examinatorer
Tillgänglig från: 2007-12-03 Skapad: 2007-12-03 Senast uppdaterad: 2018-01-12Bibliografiskt granskad

Open Access i DiVA

fulltext(1040 kB)4992 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1040 kBChecksumma MD5
1fcb67e7dae68898117142d0c742b412d06fe3bd9176bd7f2e160bfb7094161b9852068c
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för kommunikation och information
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 4992 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 2772 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf