Högskolan i Skövde

his.sePublikationer
Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Utilizing Diversity and Performance Measures for Ensemble Creation
Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
2009 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

An ensemble is a composite model, aggregating multiple base models into one predictive model. An ensemble prediction, consequently, is a function of all included base models. Both theory and a wealth of empirical studies have established that ensembles are generally more accurate than single predictive models. The main motivation for using ensembles is the fact that combining several models will eliminate uncorrelated base classifier errors. This reasoning, however, requires the base classifiers to commit their errors on different instances – clearly there is no point in combining identical models. Informally, the key term diversity means that the base classifiers commit their errors independently of each other. The problem addressed in this thesis is how to maximize ensemble performance by analyzing how diversity can be utilized when creating ensembles. A series of studies, addressing different facets of the question, is presented. The results show that ensemble accuracy and the diversity measure difficulty are the two individually best measures to use as optimization criterion when selecting ensemble members. However, the results further suggest that combinations of several measures are most often better as optimization criteria than single measures. A novel method to find a useful combination of measures is proposed in the end. Furthermore, the results show that it is very difficult to estimate predictive performance on unseen data based on results achieved with available data. Finally, it is also shown that implicit diversity achieved by varied ANN architecture or by using resampling of features is beneficial for ensemble performance.

Ort, förlag, år, upplaga, sidor
Örebro universitet , 2009. , s. 106
Serie
Studies from the School of Science and Technology at Örebro University ; 2
Nyckelord [en]
Ensemble Learning, Machine Learning, Diversity, Artificial Neural Networks, Data Mining, Information Fusion
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Teknik
Identifikatorer
URN: urn:nbn:se:his:diva-2920OAI: oai:DiVA.org:his-2920DiVA, id: diva2:209912
Presentation
(Svenska)
Tillgänglig från: 2009-05-07 Skapad: 2009-03-27 Senast uppdaterad: 2018-01-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

http://hdl.handle.net/2320/4976

Person

Löfström, Tuve

Sök vidare i DiVA

Av författaren/redaktören
Löfström, Tuve
Av organisationen
Institutionen för kommunikation och informationForskningscentrum för Informationsteknologi
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 402 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf