Approaches to multi-constraint job order balancing: A comparison between constraint programming and the genetic algorithm for schedule generation
2024 (Engelska)Självständigt arbete på grundnivå (kandidatexamen), 20 poäng / 30 hp
Studentuppsats (Examensarbete)
Abstract [en]
In scheduling, not all processes can be scheduled equally and may present their own unique set of constraints. Solution approaches include meta-heuristics and exact methods.
Two different approaches were chosen to generate schedules with constraints and compare their performance when implemented for a scheduling activity; Constraint Programming and the Genetic Algorithm. Quasi-experiments were conducted to evaluate the execution time and accuracy score of each solution using a dataset of 50 jobs. The baseline includes a completed scheduling of the jobs.
The results indicate that the Genetic Algorithm solution offers the best results in terms of execution time and accuracy, exhibiting results comparable to the baseline. The Constraint Programming solution failed to find any optimal results, demonstrating lower accuracy compared to the Genetic Algorithm and the baseline.
With the foundation laid by this study, further work may improve each model to a more usable degree.
Ort, förlag, år, upplaga, sidor
2024. , s. 4, 58, xix
Nyckelord [en]
Constraint programming, genetic algorithm, scheduling, assembly line
Nationell ämneskategori
Systemvetenskap, informationssystem och informatik med samhällsvetenskaplig inriktning
Identifikatorer
URN: urn:nbn:se:his:diva-24040OAI: oai:DiVA.org:his-24040DiVA, id: diva2:1875545
Externt samarbete
Volvo Group Digital & IT
Ämne / kurs
Informationsteknologi
Utbildningsprogram
Datavetenskap - inriktning systemutveckling, 180 hp
Handledare
Examinatorer
2024-06-232024-06-232024-06-23Bibliografiskt granskad