Högskolan i Skövde

his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Capturing genes with high impact based on reconstruction errors produced by variational autoencoders
Högskolan i Skövde, Institutionen för biovetenskap.
2023 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 30 poäng / 45 hpStudentuppsats (Examensarbete)
Abstract [en]

In this work we present a novel method to extract potential hub genes, transcription factors and regions with densely interconnected protein-protein-interaction networks from RNAseq data. To achieve this we deploy variational autoencoders, a generative machine learning framework, and extract the gene-wise reconstruction errors. This reconstruction error produced during training is considered as a measurement of impact for a gene on the transcriptome here. 

The method can handle big datasets (3.5Gb and more) in reasonable time on computers for domestic usage without any gpu-acceleration. This circumstance allows users without access to large amounts of computational resources to also work with expression data of large size. 

The final ranking based on reconstruction errors underlies less of a bias compared to most hub gene inference methods currently available. Also no prior gene regulatory network inference is required. However, the introduction of a bias can help to focus on certain genes of interest. Here we biased by using genes present in the STRING data base to also ease the following analysis. 

Analysis of reconstruction error showed a tendency for genes with low reconstruction error to capture genes with central meaning to the data set used for training. In case of healthy cells this was genes associated with house keeping mechanisms and for breast cancer data those genes were associated to breast cancer. In breast cancer specific data we found for example a high frequency of HOX family members linked specifically to breast cancer. For data covering different types of cancer here the picture was broader and covered a wide range of genes associated with different types of cancer. 

There also was a high enrichment of transcription factors present in the genes with low reconstruction error. Not only the regions with lowest reconstruction error will reveal a high enrichment for transcription factors, also other regions show transcription factor enrichment. Transcription factors from these other regions will differ regarding their correlation patterns. 

Regions with low reconstruction error and/or a high transcription factor enrichment show a high PPI-enrichment and exhibit densely interconnected networks. 

Ort, förlag, år, upplaga, sidor
2023. , s. 37
Nationell ämneskategori
Bioinformatik och systembiologi
Identifikatorer
URN: urn:nbn:se:his:diva-22977OAI: oai:DiVA.org:his-22977DiVA, id: diva2:1780505
Ämne / kurs
Systembiologi
Utbildningsprogram
Systembiologi med inriktning mot bioinformatik - masterprogram, 120 hp
Handledare
Examinatorer
Tillgänglig från: 2023-07-05 Skapad: 2023-07-05 Senast uppdaterad: 2023-07-05Bibliografiskt granskad

Open Access i DiVA

fulltext(9487 kB)99 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 9487 kBChecksumma SHA-512
968f2d139af52cb9e8c3f459b6a530c68d696ae63879fc1decf429b8a35311ece5e15f5cd100976202ad7ea5e320313d13c5a4807845e2fb4f95187f1ac3c6d5
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för biovetenskap
Bioinformatik och systembiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 99 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 584 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf