Högskolan i Skövde

his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Forward and Backward Reaching Inverse Kinematics (FABRIK) solver for DHM: A pilot study
Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningsmiljön Informationsteknologi. Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningsmiljön Virtuell produkt- och produktionsutveckling. (Interaction Lab)ORCID-id: 0000-0003-2254-1396
Texas Tech University, United States.
Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningsmiljön Informationsteknologi. (Interaction Lab)ORCID-id: 0000-0002-6568-9342
Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningsmiljön Virtuell produkt- och produktionsutveckling. (User Centred Product Design)ORCID-id: 0000-0003-4596-3815
Visa övriga samt affilieringar
2022 (Engelska)Ingår i: Proceedings of the 7th International Digital Human Modeling Symposium (DHM 2022), August 29–30, 2022, Iowa City, Iowa, USA, University of Iowa Press, 2022, Vol. 7, s. 1-11, artikel-id 26Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Posture/motion prediction is the basis of the human motion simulations that make up the core of many digital human modeling (DHM) tools and methods. With the goal of producing realistic postures and motions, a common element of posture/motion prediction methods involves applying some set of constraints to biomechanical models of humans on the positions and orientations of specified body parts. While many formulations of biomechanical constraints may produce valid predictions, they must overcome the challenges posed by the highly redundant nature of human biomechanical systems. DHM researchers and developers typically focus on optimization formulations to facilitate the identification and selection of valid solutions. While these approaches produce optimal behavior according to some, e.g., ergonomic, optimization criteria, these solutions require considerable computational power and appear vastly different from how humans produce motion. In this paper, we take a different approach and consider the Forward and Backward Reaching Inverse Kinematics (FABRIK) solver developed in the context of computer graphics for rigged character animation. This approach identifies postures quickly and efficiently, often requiring a fraction of the computation time involved in optimization-based methods. Critically, the FABRIK solver identifies posture predictions based on a lightweight heuristic approach. Specifically, the solver works in joint position space and identifies solutions according to a minimal joint displacement principle. We apply the FABRIK solver to a seven-degree of freedom human arm model during a reaching task from an initial to an end target location, fixing the shoulder position and providing the end effector (index fingertip) position and orientation from each frame of the motion capture data. In this preliminary study, predicted postures are compared to experimental data from a single human subject. Overall the predicted postures were very near the recorded data, with an average RMSE of 1.67°. Although more validation is necessary, we believe that the FABRIK solver has great potential for producing realistic human posture/motion in real-time, with applications in the area of DHM.

Ort, förlag, år, upplaga, sidor
University of Iowa Press, 2022. Vol. 7, s. 1-11, artikel-id 26
Nyckelord [en]
Inverse Kinematics, Posture Prediction, IK validation, FABRIK
Nationell ämneskategori
Produktionsteknik, arbetsvetenskap och ergonomi
Forskningsämne
Användarcentrerad produktdesign; Interaction Lab (ILAB)
Identifikatorer
URN: urn:nbn:se:his:diva-21830DOI: 10.17077/dhm.31772ISBN: 978-0-9840378-4-1 (tryckt)OAI: oai:DiVA.org:his-21830DiVA, id: diva2:1697451
Konferens
7th International Digital Human Modeling Symposium (DHM 2022), August 29–30, 2022, Iowa City, Iowa, USA. The conference was followed by the Iowa Virtual Human Summit 2022.
Anmärkning

Copyright © 2022 the author(s) 

Tillgänglig från: 2022-09-20 Skapad: 2022-09-20 Senast uppdaterad: 2022-10-17Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextProceedings

Person

Lamb, MauriceBilling, ErikHögberg, Dan

Sök vidare i DiVA

Av författaren/redaktören
Lamb, MauriceBilling, ErikHögberg, Dan
Av organisationen
Institutionen för informationsteknologiForskningsmiljön InformationsteknologiInstitutionen för ingenjörsvetenskapForskningsmiljön Virtuell produkt- och produktionsutveckling
Produktionsteknik, arbetsvetenskap och ergonomi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 218 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf