Högskolan i Skövde

his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Using Transcriptomic Data to Predict Biomarkers for Subtyping of Lung Cancer
Högskolan i Skövde, Institutionen för biovetenskap.
2021 (Engelska)Självständigt arbete på avancerad nivå (magisterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Lung cancer is one the most dangerous types of all cancer. Several studies have explored the use of machine learning methods to predict and diagnose this cancer. This study explored the potential of decision tree (DT) and random forest (RF) classification models, in the context of a small transcriptome dataset for outcome prediction of different subtypes on lung cancer. In the study we compared the three subtypes; adenocarcinomas (AC), small cell lung cancer (SCLC) and squamous cell carcinomas (SCC) with normal lung tissue by applying the two machine learning methods from caret R package. The DT and RF model and their validation showed different results for each subtype of the lung cancer data. The DT found more features and validated them with better metrics. Analysis of the biological relevance was focused on the identified features for each of the subtypes AC, SCLC and SCC. The DT presented a detailed insight into the biological data which was essential by classifying it as a biomarker. The identified features from this research may serve as potential candidate genes which could be explored further to confirm their role in corresponding lung cancer types and contribute to targeted diagnostics of different subtypes. 

Ort, förlag, år, upplaga, sidor
2021. , s. 39
Nyckelord [en]
lung cancer, decision tree, random forest, accuracy, cross-validation, machine learning
Nationell ämneskategori
Bioinformatik och systembiologi
Identifikatorer
URN: urn:nbn:se:his:diva-21598OAI: oai:DiVA.org:his-21598DiVA, id: diva2:1682705
Ämne / kurs
Bioinformatik
Utbildningsprogram
Bioinformatik - magisterprogram
Handledare
Examinatorer
Tillgänglig från: 2022-07-11 Skapad: 2022-07-11 Senast uppdaterad: 2022-07-15Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Av organisationen
Institutionen för biovetenskap
Bioinformatik och systembiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 156 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf