Högskolan i Skövde

his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Explainable AI techniques for sepsis diagnosis: Evaluating LIME and SHAP through a user study
Högskolan i Skövde, Institutionen för informationsteknologi.
2021 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Articial intelligence has had a large impact on many industries and transformed some domains quite radically. There is tremendous potential in applying AI to the eld of medical diagnostics. A major issue with applying these techniques to some domains is an inability for AI models to provide an explanation or justication for their predictions. This creates a problem wherein a user may not trust an AI prediction, or there are legal requirements for justifying decisions that are not met. This thesis overviews how two explainable AI techniques (Shapley Additive Explanations and Local Interpretable Model-Agnostic Explanations) can establish a degree of trust for the user in the medical diagnostics eld. These techniques are evaluated through a user study. User study results suggest that supplementing classications or predictions with a post-hoc visualization increases interpretability by a small margin. Further investigation and research utilizing a user study surveyor interview is suggested to increase interpretability and explainability of machine learning results.

Ort, förlag, år, upplaga, sidor
2021. , s. 48
Nyckelord [en]
Explainable AI, local interpretable model-agnostic explanations, shapley additive explanations, sepsis
Nationell ämneskategori
Systemvetenskap, informationssystem och informatik med samhällsvetenskaplig inriktning
Identifikatorer
URN: urn:nbn:se:his:diva-19845OAI: oai:DiVA.org:his-19845DiVA, id: diva2:1567397
Ämne / kurs
Informationsteknologi
Utbildningsprogram
Data Science - masterprogram
Handledare
Examinatorer
Tillgänglig från: 2021-06-16 Skapad: 2021-06-16 Senast uppdaterad: 2021-06-16Bibliografiskt granskad

Open Access i DiVA

fulltext(2797 kB)781 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2797 kBChecksumma SHA-512
1b72d31bcc79ab69b8dbade4ce9a0731d0385c16ffc7c22999c44c8c9b77360ebad837c430a7e210772d9838b7f3f4c23287945ac6cbf39dc77f4edb00272475
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för informationsteknologi
Systemvetenskap, informationssystem och informatik med samhällsvetenskaplig inriktning

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 781 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 2041 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf