Högskolan i Skövde

his.sePublikationer
Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Single-cell Analysis of Sex Differences in Mice Vagal Afferent Neurons
Högskolan i Skövde, Institutionen för biovetenskap.
2020 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 30 poäng / 45 hpStudentuppsats (Examensarbete)
Abstract [en]

Vagal afferent neurons (VAN) possess terminals in numerous organs of the body and intervene different sensory modalities. Studies suggests that these neurons have varying functions in both males and females in relation to feeding responses, obesity and more. Furthermore, studies also demonstrated there were sex differences in mice VAN as the deletion of VAN leptin receptors showed instinctive feeding response and deposition of excess adipose tissue. Sequel to this, studies have shown that there are a few functional differences in the VAN with sex – specific vagal communication and for that reason, the hypothesis of the project was that there are also molecular differences between male and female mice and the aim was to identify the differences using existing single – cell RNA - sequencing (scRNA-seq) datasets from the articles of Kupari et al. and Bai et al. respectively. The authors both investigated the vagal sensory neurons of mice using the scRNA-seq. Three datasets from the afore mentioned papers were analyzed with the aid of different Bioinformatic tools. Firstly, genes mapping to the Y chromosomes were identified and the sum of their expression was used to assign sex (male or female) to individual cell samples in the datasets, and the classification was also validated using the Xist gene. Secondly, the seurat pipeline which is the suitable tool for analyzing scRNA-seq datasets was employed to identify differentially expressed genes (DEGs) between VAN from male and female mice and in each cluster of the VAN. The results were then analyzed and visualized using principal component analysis (PCA), t-Distributed Stochastic Neighbour Embedding (tSNE), volcano and violin plots. The study identified six genes namely: Gadd45a, 1810037I17Rik, Tmem50b, Eif2s3x, 1810041L15Rik and Nek7 as potential sex difference marker genes. The six genes identified were not only linked to the sex-linked chromosomes but to other chromosomes in the mice with expressions in different organs of the body particularly the brain, ovary, and testis. More so, few of the genes suggest positive and negative impact in diseases like down syndrome and cancer particularly ovarian cancer which is common to females.

Ort, förlag, år, upplaga, sidor
2020. , s. 42
Nationell ämneskategori
Bioinformatik och beräkningsbiologi
Identifikatorer
URN: urn:nbn:se:his:diva-19368OAI: oai:DiVA.org:his-19368DiVA, id: diva2:1514497
Externt samarbete
Skibicka Lab - Gothenburg University
Ämne / kurs
Systembiologi
Utbildningsprogram
Infektionsbiologi - masterprogram
Handledare
Examinatorer
Tillgänglig från: 2021-01-05 Skapad: 2021-01-05 Senast uppdaterad: 2025-02-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Av organisationen
Institutionen för biovetenskap
Bioinformatik och beräkningsbiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 784 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf