his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Neural network ensemble operators for time series forecasting
Lancaster University Management School, Department of Management Science, Lancaster, United Kingdom.ORCID-id: 0000-0003-0211-5218
Lancaster University Management School, Department of Management Science, Lancaster, United Kingdom.
Lancaster University Management School, Department of Management Science, Lancaster, United Kingdom.
2014 (Engelska)Ingår i: Expert systems with applications, ISSN 0957-4174, E-ISSN 1873-6793, Vol. 41, nr 9, s. 4235-4244Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The combination of forecasts resulting from an ensemble of neural networks has been shown to outperform the use of a single "best" network model. This is supported by an extensive body of literature, which shows that combining generally leads to improvements in forecasting accuracy and robustness, and that using the mean operator often outperforms more complex methods of combining forecasts. This paper proposes a mode ensemble operator based on kernel density estimation, which unlike the mean operator is insensitive to outliers and deviations from normality, and unlike the median operator does not require symmetric distributions. The three operators are compared empirically and the proposed mode ensemble operator is found to produce the most accurate forecasts, followed by the median, while the mean has relatively poor performance. The findings suggest that the mode operator should be considered as an alternative to the mean and median operators in forecasting applications. Experiments indicate that mode ensembles are useful in automating neural network models across a large number of time series, overcoming issues of uncertainty associated with data sampling, the stochasticity of neural network training, and the distribution of the forecasts. 

Ort, förlag, år, upplaga, sidor
Elsevier, 2014. Vol. 41, nr 9, s. 4235-4244
Nyckelord [en]
Combination, Ensembles, Forecasting, Kernel density estimation, Mean, Median, Mode estimation, Neural networks, Time series
Nationell ämneskategori
Meteorologi och atmosfärforskning Systemvetenskap, informationssystem och informatik
Identifikatorer
URN: urn:nbn:se:his:diva-18252DOI: 10.1016/j.eswa.2013.12.011ISI: 000333778000018Scopus ID: 2-s2.0-84893467682OAI: oai:DiVA.org:his-18252DiVA, id: diva2:1402790
Tillgänglig från: 2020-02-28 Skapad: 2020-02-28 Senast uppdaterad: 2020-02-28Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Kourentzes, Nikolaos

Sök vidare i DiVA

Av författaren/redaktören
Kourentzes, Nikolaos
I samma tidskrift
Expert systems with applications
Meteorologi och atmosfärforskningSystemvetenskap, informationssystem och informatik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 47 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf