Högskolan i Skövde

his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Estimating cycle time in the food process industry: Different machine learning techniques and their accuracy
Högskolan i Skövde, Institutionen för informationsteknologi.
2019 (Engelska)Självständigt arbete på grundnivå (kandidatexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Ability to estimate cycle time is becoming more important for organisations in order to better utilize resources and potentially save money. The aim is to research whether three different machine learning techniques can be used to do this estimation of cycle time in a food processing environment and which one gets the highest accuracy.

Accuracy is tested with the help of three error measurements, called Mean Absolute Error, Root Mean Squared Error and Mean Absolute Percentage Error, for each technique. The implementation of Artificial Neural Network, Decision Tree and k-Nearest Neighbor were usedwith a Python library called scikit-learn. Data from a real slaughterhouse was provided and used to train and test the techniques.

Results shows that all techniques managed to produce relatively equal estimations for this problem. The better technique ended up being decision tree reached a Mean Absolute Percentage Error of 34.77%, closely followed by KNN with 35.06%.

Ort, förlag, år, upplaga, sidor
2019. , s. 29
Nyckelord [en]
Machine Learning, Cycle Time, Time Estimation, Supervised Learning, Experiment
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:his:diva-17334OAI: oai:DiVA.org:his-17334DiVA, id: diva2:1332873
Ämne / kurs
Informationsteknologi
Utbildningsprogram
Systemvetenskap - inriktning Enterprise Information Management
Handledare
Examinatorer
Tillgänglig från: 2019-07-02 Skapad: 2019-06-28 Senast uppdaterad: 2019-07-02Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Av organisationen
Institutionen för informationsteknologi
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 90 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf