Högskolan i Skövde

his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A fuzzy logic approach to influence maximization in social networks
Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningsmiljön Informationsteknologi. (Distribuerade realtidssystem (DRTS), Distributed Real-Time Systems)ORCID-id: 0000-0002-7312-9089
College of Information Technology, United Arab Emirates University, Al-Ain, United Arab Emirates.
Royal Institute of Management, Thimphu, Bhutan.
Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningsmiljön Informationsteknologi. (Distribuerade realtidssystem (DRTS), Distributed Real-Time Systems)ORCID-id: 0000-0002-1039-5830
2020 (Engelska)Ingår i: Journal of Ambient Intelligence and Humanized Computing, ISSN 1868-5137, E-ISSN 1868-5145, Vol. 11, nr 6, s. 2435-2451Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Within a community, social relationships are paramount to profile individuals’ conduct. For instance, an individual within a social network might be compelled to embrace a behaviour that his/her companion has recently adopted. Such social attitude is labelled social influence, which assesses the extent by which an individual’s social neighbourhood adopt that individual’s behaviour. We suggest an original approach to influence maximization using a fuzzy-logic based model, which combines influence-weights associated with historical logs of the social network users, and their favourable location in the network. Our approach uses a two-phases process to maximise influence diffusion. First, we harness the complexity of the problem by partitioning the network into significantly-enriched community-structures, which we then use as modules to locate the most influential nodes across the entire network. These key users are determined relatively to a fuzzy-logic based technique that identifies the most influential users, out of which the seed-set candidates to diffuse a behaviour or an innovation are extracted following the allocated budget for the influence campaign. This way to deal with influence propagation in social networks, is different from previous models, which do not compare structural and behavioural attributes among members of the network. The performance results show the validity of the proposed partitioning-approach of a social network into communities, and its contribution to “activate” a higher number of nodes overall. Our experimental study involves both empirical and real contemporary social-networks, whereby a smaller seed set of key users, is shown to scale influence to the high-end compared to some renowned techniques, which employ a larger seed set of key users and yet they influence less nodes in the social network.

Ort, förlag, år, upplaga, sidor
Springer, 2020. Vol. 11, nr 6, s. 2435-2451
Nyckelord [en]
Social networks, Community detection, Influence propagation, Fuzzy logic
Nationell ämneskategori
Data- och informationsvetenskap
Forskningsämne
Distribuerade realtidssystem (DRTS)
Identifikatorer
URN: urn:nbn:se:his:diva-16779DOI: 10.1007/s12652-019-01286-2ISI: 000536462400019Scopus ID: 2-s2.0-85064252809OAI: oai:DiVA.org:his-16779DiVA, id: diva2:1305165
Tillgänglig från: 2019-04-15 Skapad: 2019-04-15 Senast uppdaterad: 2020-06-29Bibliografiskt granskad

Open Access i DiVA

fulltext(3132 kB)226 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 3132 kBChecksumma SHA-512
94982f0082f90511b53d40cf5757a746e22d2752e2332781b5fa4a51fdddea8dace38a68c50b2297b53f225297758cbb9e7c68c8a1286a17cb9de3951eb05bcc
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Atif, YacineLindström, Birgitta

Sök vidare i DiVA

Av författaren/redaktören
Atif, YacineLindström, Birgitta
Av organisationen
Institutionen för informationsteknologiForskningsmiljön Informationsteknologi
I samma tidskrift
Journal of Ambient Intelligence and Humanized Computing
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 352 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 1372 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf