Högskolan i Skövde

his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The Business Value of Text Mining
Högskolan i Skövde, Institutionen för informationsteknologi.
2017 (Engelska)Självständigt arbete på grundnivå (kandidatexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Text mining is an enabling technology that will come to change the process for how businesses derive insights & knowledge from the textual data available to them. The current literature has its focus set on the text mining algorithms and techniques, whereas the practical aspects of text mining are lacking. The efforts of this study aims at helping companies understand what the business value of text mining is with the help of a case study. Subsequently, an SMS-survey method was used to identify additional business areas where text mining could be used to derive business value from. A literature review was conducted to conceptualize the business value of text mining, thus a concept matrix was established. Here a business category and its relative: derived insights & knowledge, domain, and data source are specified. The concept matrix was from then on used to decide when information was of business value, to prove that text mining could be used to derive information of business value.Text mining analyses was conducted on traffic school data of survey feedback. The results were several patterns, where the business value was derived mainly for the categories of Quality Control & Quality Assurance. After comparing the results of the SMS-survey with the case study empiricism, some difficulties emerged in the categorization of derived information, implying the categories are required to become more specific and distinct. Furthermore, the concept matrix does not comprise all of the business categories that are sure to exist.

Ort, förlag, år, upplaga, sidor
2017. , s. 64
Nyckelord [en]
business value, text mining, survey data analysis, business value of text mining
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:his:diva-13740OAI: oai:DiVA.org:his-13740DiVA, id: diva2:1110823
Externt samarbete
IP.1
Ämne / kurs
Informationsteknologi
Utbildningsprogram
Systemvetenskap - inriktning Business Intelligence
Handledare
Examinatorer
Tillgänglig från: 2017-06-16 Skapad: 2017-06-16 Senast uppdaterad: 2017-06-16Bibliografiskt granskad

Open Access i DiVA

BVTM(1396 kB)1615 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1396 kBChecksumma SHA-512
c5404d546312c37fe025713496389f3fb758f6cd0718457ed04bdc010b63ab665d84db1c16299247c5128e40b66a6d3cf76f0673d96a5eddac1291d111935963
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för informationsteknologi
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 1615 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 1361 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf