his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
USING CASE-BASED REASONING FOR PREDICTING ENERGY USAGE
Högskolan i Skövde, Institutionen för informationsteknologi.
2013 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 30 poäng / 45 hpStudentuppsats (Examensarbete)
Abstract [en]

In this study, the inability to in a future meet the electricity demand and the urge to change the consumption behavior considered. In a smart grid context there are several possible ways to do this. Means include ways to increase the consumer’s awareness, add energy storages or build smarter homes which can control the appliances. To be able to implement these, indications on how the future consumption will be could be useful. Therefore we look further into how a framework for short-term consumption predictions can be created using electricity consumption data in relation to external factors. To do this a literature study is made to see what kind of methods that are relevant and which qualities is interesting to look at in order to choose a good prediction method. Case Based Reasoning seemed to be able to be suitable method. This method was examined further and built using relational databases. After this the method was tested and evaluated using datasets and evaluation methods CV, MBE and MAPE, which have previously been used in the domain of consumption prediction. The result was compared to the results of the winning methods in the ASHRAE competition. The CBR method was expected to perform better than what it did, and still not as good as the winning methods from the ASHRAE competition. The result showed that the CBR method can be used as a predictor and has potential to make good energy consumption predictions. and there is room for improvement in future studies.

Ort, förlag, år, upplaga, sidor
2013. , s. 44
Nyckelord [en]
case-based reasoning, predict, energy usage, relational databases, short-term consumption, cbr
Nationell ämneskategori
Datorsystem Kommunikationssystem
Identifikatorer
URN: urn:nbn:se:his:diva-9436OAI: oai:DiVA.org:his-9436DiVA, id: diva2:724285
Ämne / kurs
Datavetenskap
Utbildningsprogram
Datavetenskap - masterprogram
Handledare
Examinatorer
Tillgänglig från: 2014-06-15 Skapad: 2014-06-12 Senast uppdaterad: 2014-06-15Bibliografiskt granskad

Open Access i DiVA

fulltext(1345 kB)365 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1345 kBChecksumma SHA-512
57268425a31ec5b8bf1526c15ddaa8e404fd3b469e1c37915e3ff44e2c3c2db0e8af4e49a6253cfe873777dfd72aaea383c123eacb3874a6be68dd4899e080fb
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Bjurén, Johan
Av organisationen
Institutionen för informationsteknologi
DatorsystemKommunikationssystem

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 365 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 746 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf