his.sePublikationer
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Dynamic and Automatic Vulnerability Assessment for Cyber-Physical System
Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (Distribuerade realtidssystem (DRTS), Distributed Real-Time Systems)ORCID-id: 0000-0003-4791-8452
2019 (Engelska)Konferensbidrag, Poster (med eller utan abstract) (Övrigt vetenskapligt)
Abstract [en]

Assessing vulnerabilities supports analytics-based decision-making processes to protect Critical Infrastructures (CIs), in order to focus on specific risks rising from threat-exploitability with varying degrees of impact-severity. The notion of risk remains elusive, as evidenced by the increasing investigations on CIs security operations centres (SOCs) where analysts employ various detection, assessment, and defence mechanisms to monitor security events. Normally, SOCs involve advances of multiple automated security tools such as network vulnerability scanners and Common Vulnerability Scoring System (CVSS), combined with analysis of data contained and produced by cyber-physical system (CPS) as well as alarms retrieved from vulnerability repositories such as Common Vulnerability Exposure (CVE). The security operators need further to forecast the match between these vulnerabilities and the state of intricate CIs layer networks, while prioritising patching investments using vulnerability-scoring mechanisms. This process shows the central role of security operators in SOCs and their need for support to keep pace with dynamically evolving vulnerability-alert repositories. Recent advances in data analytics also prompt dynamic data-driven vulnerability assessments whereby data contained and produced by CPS include hidden traces of vulnerability fingerprints. However, the huge volume of scanned data requires high capability of information processing and analytical reasoning, which could not be satisfied considering the imprecise nature of manual vulnerability assessment.

A knowledge-base system that consolidates both sides into empirical rules appears to be missing, yet it promises to offer a suitable level of decision-support. In our research, we propose a dynamic and automated vulnerability-assessment approach. The proposed streamlined approach employs computational intelligence techniques to analyse data retrieved from vulnerability-alert repositories and CPS layer networks within an innovative accurate and automatic scoring system, away from traditional manual and highly subjective mechanisms. Our approach suggests to substitute offline, costly, error-prone and pure subjective vulnerability assessment processes with an automatic, accurate and data-evidenced approach, to improve situation awareness and to support security decision making. In doing so, we investigate judicious computational-intelligence techniques such as fuzzy-logic, machine learning and data mining, applied to vulnerability assessment problems.

Ort, förlag, år, upplaga, sidor
2019.
Nyckelord [en]
Cyber-Physical System Security, Vulnerability Assessment
Nationell ämneskategori
Inbäddad systemteknik Datavetenskap (datalogi)
Forskningsämne
Distribuerade realtidssystem (DRTS)
Identifikatorer
URN: urn:nbn:se:his:diva-17752OAI: oai:DiVA.org:his-17752DiVA, id: diva2:1357177
Konferens
19th Seminar within the Framework of a Swedish IT Security Network for PhD students, Karlstad, Sweden, June 3-4, 2019
Projekt
ELVIRA
Anmärkning

A short presentation was given during SWITS'2019 workshop for the poster.

Tillgänglig från: 2019-10-03 Skapad: 2019-10-03 Senast uppdaterad: 2019-10-04Bibliografiskt granskad

Open Access i DiVA

fulltext(3261 kB)1 nedladdningar
Filinformation
Filnamn FULLTEXT01.pngFilstorlek 3261 kBChecksumma SHA-512
962378bc1dbb16e0a2ef913db1adafd6f117e11e67d61b55eade94719bd008311e5e00a5b5dc5697235c6db6404d16a9bf24785a4d4f82a93e9eb51325eeac0d
Typ fulltextMimetyp image/png

Personposter BETA

Jiang, Yuning

Sök vidare i DiVA

Av författaren/redaktören
Jiang, Yuning
Av organisationen
Institutionen för informationsteknologiForskningscentrum för Informationsteknologi
Inbäddad systemteknikDatavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 1 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 191 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf