his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
k-Nearest-Neighbour based Numerical Hand Posture Recognition using a Smart Textile Glove
Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (Interaction Lab)ORCID-id: 0000-0002-7236-997X
Department of Design, Faculty of Textiles, Engineering and Business, University of Borås, Sweden.
Department of Textile Technology, Faculty of Textiles, Engineering and Business, University of Borås, Sweden.ORCID-id: 0000-0002-0558-942X
Department of Textile Technology, Faculty of Textiles, Engineering and Business, University of Borås, Sweden.
Vise andre og tillknytning
2015 (engelsk)Inngår i: AMBIENT 2015: The Fifth International Conference on Ambient Computing, Applications, Services and Technologies / [ed] MaartenWeyn, International Academy, Research and Industry Association (IARIA), 2015, s. 36-41Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In this article, the authors present an interdisciplinary project that illustrates the potential and challenges in dealing with electronic textiles as sensing devices. An interactive system consisting of a knitted sensor glove and electronic circuit and a numeric hand posture recognition algorithm based on k-nearestneighbour (kNN) is introduced. The design of the sensor glove itself is described, considering two sensitive fiber materials – piezoresistive and piezoelectric fibers – and the construction using an industrial knitting machine as well as the electronic setup is sketched out. Based on the characteristics of the textile sensors, a kNN technique based on a condensed dataset has been chosen to recognize hand postures indicating numbers from one to five from the sensor data. The authors describe two types of data condensation techniques (Reduced Nearest Neighbours and Fast Condensed Nearest Neighbours) in order to improve the data quality used by kNN, which are compared in terms of run time, condensation rate and recognition accuracy. Finally, the article gives an outlook on potential application scenarios for sensor gloves in pervasive computing.

sted, utgiver, år, opplag, sider
International Academy, Research and Industry Association (IARIA), 2015. s. 36-41
HSV kategori
Forskningsprogram
Interaction Lab (ILAB); Användarcentrerad produktdesign
Identifikatorer
URN: urn:nbn:se:his:diva-12105ISBN: 978-1-61208-421-3 (tryckt)OAI: oai:DiVA.org:his-12105DiVA, id: diva2:917517
Konferanse
AMBIENT 2015: The Fifth International Conference on Ambient Computing, Applications, Services and Technologies, July 19 - 24, 2015, Nice, France
Merknad

Research supported by Västra Götalandsregionen (VGR), grant number RUN 612-0197-13.

Tilgjengelig fra: 2016-04-06 Laget: 2016-04-06 Sist oppdatert: 2018-08-03bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Länk till fulltext (proceedings)

Personposter BETA

Li, CaiLund, AnjaHemeren, PaulHögberg, Dan

Søk i DiVA

Av forfatter/redaktør
Li, CaiLund, AnjaHemeren, PaulHögberg, Dan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 1244 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf