his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On the scalability of meta-models in simulation-based optimization of production systems
Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system. (Simulation-Based Optimization)ORCID-id: 0000-0001-5436-2128
Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system. (Simulation-Based Optimization)ORCID-id: 0000-0003-0111-1776
2015 (engelsk)Inngår i: Proceedings of the 2015 Winter Simulation Conference / [ed] L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, Piscataway, NJ: IEEE Press, 2015, s. 3644-3655Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Optimization of production systems often involves numerous simulations of computationally expensive discrete-event models. When derivative-free optimization is sought, one usually resorts to evolutionary and other population-based meta-heuristics. These algorithms typically demand a large number of objective function evaluations, which in turn, drastically increases the computational cost of simulations. To counteract this, meta-models are used to replace expensive simulations with inexpensive approximations. Despite their widespread use, a thorough evaluation of meta-modeling methods has not been carried out yet to the authors' knowledge. In this paper, we analyze 10 different meta-models with respect to their accuracy and training time as a function of the number of training samples and the problem dimension. For our experiments, we choose a standard discrete-event model of an unpaced flow line with scalable number of machines and buffers. The best performing meta-model is then used with an evolutionary algorithm to perform multi-objective optimization of the production model.

sted, utgiver, år, opplag, sider
Piscataway, NJ: IEEE Press, 2015. s. 3644-3655
Serie
Winter Simulation Conference. Proceedings, ISSN 0891-7736
Emneord [en]
Simulation, Optimization, Production, Evolutionary
HSV kategori
Forskningsprogram
Teknik; Produktion och automatiseringsteknik
Identifikatorer
URN: urn:nbn:se:his:diva-11917DOI: 10.1109/WSC.2015.7408523ISI: 000399133903070Scopus ID: 2-s2.0-84962859669ISBN: 978-1-4673-9743-8 (tryckt)OAI: oai:DiVA.org:his-11917DiVA, id: diva2:902854
Konferanse
WSC '15 Winter Simulation Conference, Huntington Beach, CA, USA — December 06 - 09, 2015
Tilgjengelig fra: 2016-02-12 Laget: 2016-02-12 Sist oppdatert: 2018-05-08bibliografisk kontrollert

Open Access i DiVA

On the scalability of meta-models in simulation-based optimization of production systems(373 kB)188 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 373 kBChecksum SHA-512
5d70e5db01c30630ce8ce731fecd8f9d4f5eda65df1f4ca4fe9eb66512136eeb2830a5794808554f13704619d11aaacae431e320fdf0bbae4a1bedb4b638cbe2
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Bandaru, SunithNg, Amos H. C.

Søk i DiVA

Av forfatter/redaktør
Bandaru, SunithNg, Amos H. C.
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 188 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 1094 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf