his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Data mining file sharing metadata: A comparison between Random Forests Classificiation and Bayesian Networks
Högskolan i Skövde, Institutionen för informationsteknologi.
2015 (engelsk)Independent thesis Basic level (degree of Bachelor), 15 poäng / 22,5 hpOppgave
Abstract [en]

In this comparative study based on experimentation it is demonstrated that the two evaluated machine learning techniques, Bayesian networks and random forests, have similar predictive power in the domain of classifying torrents on BitTorrent file sharing networks.

This work was performed in two steps. First, a literature analysis was performed to gain insight into how the two techniques work and what types of attacks exist against BitTorrent file sharing networks. After the literature analysis, an experiment was performed to evaluate the accuracy of the two techniques.

The results show no significant advantage of using one algorithm over the other when only considering accuracy. However, ease of use lies in Random forests’ favour because the technique requires little pre-processing of the data and still generates accurate results with few false positives.

sted, utgiver, år, opplag, sider
2015. , s. 43
Emneord [en]
machine learning, random forests, bayesian network, bittorrent, file sharing
HSV kategori
Identifikatorer
URN: urn:nbn:se:his:diva-11180OAI: oai:DiVA.org:his-11180DiVA, id: diva2:823863
Fag / kurs
Computer Science
Utdanningsprogram
Computer Science - Specialization in Systems Development
Veileder
Examiner
Tilgjengelig fra: 2015-09-04 Laget: 2015-06-18 Sist oppdatert: 2018-01-11bibliografisk kontrollert

Open Access i DiVA

fulltext(1558 kB)489 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1558 kBChecksum SHA-512
c6a131018a2cb3631649410725222b7d94eff9aca01742dfc7f8b5bf8b2762d575eceef9728aa6ee1e0cffbf9bb210be27c74b2fd08ede8e4204a53d1adf8170
Type fulltextMimetype application/pdf
bilaga(2415 kB)38 nedlastinger
Filinformasjon
Fil ATTACHMENT01.zipFilstørrelse 2415 kBChecksum SHA-512
495fcfd3597e6994bdb03913cf2c0197dea21691a4c0cb06e8d0886ecebfc1babfb93d5ea71d5c3f54247bd8f3a61f2dae77f40f23feaa74a6a045b1acda9e2f
Type attachmentMimetype application/zip

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 489 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 471 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf