his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Supervised Learning Using a Symmetric Bilinear Form for Record Linkage
IIIA, Institut d'Investigació en Intel·ligència Artificial, CSIC, Consejo Superior de Investigaciones Científicas, Campus UAB s/n, Bellaterra, Spain / UAB, Universitat Autònoma de Barcelona, Campus UAB s/n, Bellaterra, Spain.
Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. IIIA, Institut d'Investigació en Intel·ligència Artificial, CSIC, Consejo Superior de Investigaciones Científicas, Campus UAB s/n, Bellaterra, Spain. (Skövde Artificial Intelligence Lab (SAIL))ORCID-id: 0000-0002-0368-8037
DEIC, Dep. Enginyeria de la Informació i de les Comunicacions, UAB, Universitat Autònoma de Barcelona, Campus UAB s/n, Bellaterra, Spain.
2015 (engelsk)Inngår i: Information Fusion, ISSN 1566-2535, E-ISSN 1872-6305, Vol. 26, s. 144-153Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Record Linkage is used to link records of two different files corresponding to the same individuals. These algorithms are used for database integration. In data privacy, these algorithms are used to evaluate the disclosure risk of a protected data set by linking records that belong to the same individual. The degree of success when linking the original (unprotected data) with the protected data gives an estimation of the disclosure risk.

In this paper we propose a new parameterized aggregation operator and a supervised learning method for disclosure risk assessment. The parameterized operator is a symmetric bilinear form and the supervised learning method is formalized as an optimization problem. The target of the optimization problem is to find the values of the aggregation parameters that maximize the number of re-identification (or correct links). We evaluate and compare our proposal with other non-parametrized variations of record linkage, such as those using the Mahalanobis distance and the Euclidean distance (one of the most used approaches for this purpose). Additionally, we also compare it with other previously presented parameterized aggregation operators for record linkage such as the weighted mean and the Choquet integral. From these comparisons we show how the proposed aggregation operator is able to overcome or at least achieve similar results than the other parameterized operators. We also study which are the necessary optimization problem conditions to consider the described aggregation functions as metric functions.

sted, utgiver, år, opplag, sider
Elsevier, 2015. Vol. 26, s. 144-153
HSV kategori
Forskningsprogram
Skövde Artificial Intelligence Lab (SAIL)
Identifikatorer
URN: urn:nbn:se:his:diva-11130DOI: 10.1016/j.inffus.2014.11.004ISI: 000356121700010Scopus ID: 2-s2.0-84939970504OAI: oai:DiVA.org:his-11130DiVA, id: diva2:821970
Tilgjengelig fra: 2015-06-16 Laget: 2015-06-16 Sist oppdatert: 2018-03-28bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Torra, Vicenç

Søk i DiVA

Av forfatter/redaktør
Torra, Vicenç
Av organisasjonen
I samme tidsskrift
Information Fusion

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 1635 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf