his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Increased Robustness of Product Sequencing using Multi-Objective Optimization
Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system. (Produktion och Automatiseringsteknik)
Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system. (Produktion och Automatiseringsteknik)
2014 (engelsk)Inngår i: Proceeding of 47th CIRP Conference on Manufacturing Systems, Elsevier, 2014, Vol. 17, s. 434-439Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Almost all manufacturing processes are subject to uncontrollable variations, caused, for example, by human operators or worn-out machines. When optimizing real-world product sequencing problems, it is of importance to find solutions that are robust, that is, whose performance remains relatively unchanged when exposed to uncertain conditions. In this paper, an extension of the traditional method of handling variations through replications is suggested that aims at finding solutions with an increased degree of robustness. The basic idea is to use standard deviation as an additional optimization objective and transform the single-objective problem into a multi-objective problem. Using standard deviation as an additional objective aims to focus the optimization on solutions that exhibit both high performance and high robustness (that is, having low standard deviation). In order to optimize the two objectives simultaneously, a multi-objective evolutionary algorithm is utilized. The proposed method for improved robustness is evaluated using a real-world test case found at the company GKN Aerospace in Sweden. GKN Aerospace manufactures a variety of different components for aircraft engines and aero derivative gas turbines. The company has recently installed a new workshop, and the focus of the study is on the x-ray stations in this workshop. For performing optimizations the company has created a simulation model that realistically mimics the workshop. As an optimization technique, a multi-objective evolutionary algorithm called NSGA-2 is being used. The algorithm considers the mean value and standard deviation from replications of the stochastic simulation as objectives, optimizing both of them simultaneously. Results from the study show that the optimization is able to successfully find robust solutions using the proposed method. However, the general increase in algorithm performance expected with the proposed method is absent, and possible reasons for this are discussed in the paper.

sted, utgiver, år, opplag, sider
Elsevier, 2014. Vol. 17, s. 434-439
Serie
Procedia CIRP, ISSN 2212-8271
Emneord [en]
Evolutionary Algorithm, Multi-objective optimization, Product Sequencing, Robustness
HSV kategori
Forskningsprogram
Teknik; Produktion och automatiseringsteknik
Identifikatorer
URN: urn:nbn:se:his:diva-9737DOI: 10.1016/j.procir.2014.01.141ISI: 000345458000074Scopus ID: 2-s2.0-84904510168OAI: oai:DiVA.org:his-9737DiVA, id: diva2:739280
Konferanse
47th CIRP Conference on Manufacturing Systems
Tilgjengelig fra: 2014-08-20 Laget: 2014-08-20 Sist oppdatert: 2018-05-07bibliografisk kontrollert

Open Access i DiVA

fulltext(269 kB)588 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 269 kBChecksum SHA-512
f11afb34fd4a4c4d638b64f54182667e0fee7c3ac6fc8c570a6be9f7ca2fcfaccce170ad4f3a14d474e6059faf335fec97d2d598adb489d12c9815206636aaa2
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Syberfeldt, AnnaGustavsson, Patrik

Søk i DiVA

Av forfatter/redaktør
Syberfeldt, AnnaGustavsson, Patrik
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 588 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 1417 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf