Högskolan i Skövde

his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Online Detection of Anomalous Sub-Trajectories: A Sliding Window Approach based on Conformal Anomaly Detection and Local Outlier Factor
Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (SAIL)
Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (SAIL)ORCID-id: 0000-0001-8884-2154
2012 (engelsk)Inngår i: Artificial Intelligence Applications and Innovations: AIAI 2012 International Workshops: AIAB, AIeIA, CISE, COPA, IIVC, ISQL, MHDW, and WADTMB, Halkidiki, Greece, September 27–30, 2012, Proceedings, Part II / [ed] Lazaros Iliadis, Ilias Maglogiannis, Harris Papadopoulos, Kostas Karatzas, Spyros Sioutas, Springer, 2012, s. 192-202Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Automated detection of anomalous trajectories is an important problem in the surveillance domain. Various algorithms based on learning of normal trajectory patterns have been proposed for this problem. Yet, these algorithms suffer from one or more of the following limitations: First, they are essentially designed for offline anomaly detection in databases. Second, they are insensitive to local sub-trajectory anomalies. Third, they involve tuning of many parameters and may suffer from high false alarm rates. The main contribution of this paper is the proposal and discussion of the Sliding Window Local Outlier Conformal Anomaly Detector (SWLO-CAD), which is an algorithm for online detection of local sub-trajectory anomalies. It is an instance of the previously proposed Conformal anomaly detector and, hence, operates online with well-calibrated false alarm rate. Moreover, SWLO-CAD is based on Local outlier factor, which is a previously proposed outlier measure that is sensitive to local anomalies. Thus, SWLO-CAD has a unique set of properties that address the issues above.

sted, utgiver, år, opplag, sider
Springer, 2012. s. 192-202
Serie
IFIP Advances in Information and Communication Technology, ISSN 1868-4238 ; 382
HSV kategori
Forskningsprogram
Teknik
Identifikatorer
URN: urn:nbn:se:his:diva-6921DOI: 10.1007/978-3-642-33412-2_20Scopus ID: 2-s2.0-84870897781ISBN: 978-3-642-33411-5 ISBN: 978-3-642-33412-2 OAI: oai:DiVA.org:his-6921DiVA, id: diva2:578058
Konferanse
8th International Workshop on Artificial Intelligence Applications and Innovations, AIAI 2012: AIAB, AIeIA, CISE, COPA, IIVC, ISQL, MHDW, and WADTMB; Halkidiki; 27 September 2012–30 September 2012
Tilgjengelig fra: 2012-12-17 Laget: 2012-12-17 Sist oppdatert: 2018-01-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Laxhammar, RikardFalkman, Göran

Søk i DiVA

Av forfatter/redaktør
Laxhammar, RikardFalkman, Göran
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 548 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf