his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An EEMD and ICA-based Integrative Approach to Wind Turbine Gearbox Diagnosis
University of Connecticut, Storrs, CT, USA.
University of Connecticut, Storrs, CT, USA.
Southeast University, Nanjing, China.
Högskolan i Skövde, Forskningscentrum för Virtuella system. Högskolan i Skövde, Institutionen för teknik och samhälle.ORCID-id: 0000-0001-8679-8049
2013 (engelsk)Inngår i: Eighth CIRP Conference on Intelligent Computation in Manufacturing Engineering / [ed] Roberto Teti, Elsevier, 2013, Vol. 12, s. 133-138Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Increasing demand on energy has accelerated research on improving the reliability of wind turbines. As a critical component in wind turbine drivetrains, the majority of gearbox failures have shown to initiate from bearing failures. The low signal-to-noise ratio and transient nature of bearing signals pose significant difficulty for bearing defect diagnosis at the incipient stage. For improved bearing diagnosis, this paper presents a new method that integrates ensemble empirical mode decomposition (EEMD) with independent component analysis (ICA) to effectively separate bearing and gear meshing signals, without requiring a priori information on rotating speeds or bandwidth. The method first decomposes sensor measurement into a series of intrinsic mode functions (IMFs) as pseudo multi-channel signals, by means of EEMD, to satisfy the requirement by ICA for redundant information. ICA is performed on the IMFs to separate defective bearing components from gear meshing signal. Enveloping spectrum analysis is then performed to identify bearing structural defects. Both numerical and experimental studies have demonstrated the merit of the developed new method in improving gearbox diagnosis.

sted, utgiver, år, opplag, sider
Elsevier, 2013. Vol. 12, s. 133-138
Serie
Procedia CIRP, ISSN 2212-8271 ; 12
Emneord [en]
Wind turbine, bearing diagnosis, EEMD, ICA
HSV kategori
Forskningsprogram
Teknik
Identifikatorer
URN: urn:nbn:se:his:diva-6856DOI: 10.1016/j.procir.2013.09.024Scopus ID: 2-s2.0-84886785490OAI: oai:DiVA.org:his-6856DiVA, id: diva2:572376
Konferanse
CIRP ICME'12 - 8th CIRP Conference on Intelligent Computation in Manufacturing Engineering, Innovative and Cognitive Production Technology and Systems, 18-20 July 2012, Ischia, Gulf of Naples, Italy
Tilgjengelig fra: 2012-11-27 Laget: 2012-11-27 Sist oppdatert: 2019-12-20bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Wang, Lihui

Søk i DiVA

Av forfatter/redaktør
Wang, Lihui
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 559 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf