Högskolan i Skövde

his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Unsupervised Imitation In Evolved Robots
Högskolan i Skövde, Institutionen för kommunikation och information.
2005 (engelsk)Independent thesis Advanced level (degree of Master (One Year))Oppgave
Abstract [en]

Imitation learning has been studied from a large range of disciplines, including adaptive robotics. In adaptive robotics the focus is often on how robots can learn tasks by imitating experts. In order to build robots able to imitate a number of problems must be solved, including: How does the robot know when and what to imitate? How does the robot link the recognition of observed actions to the execution of the same actions? This thesis presents an approach using unsupervised imitation where artificial evolution is used to find solutions to the problems. The approach is tested in a number of experiments where robots are being evolved to solve a number of navigation tasks of varying difficulty. Two sets of experiments are made for each task. In the first set the robots are trained without any demonstrator present. The second set is identical to the first one except for the presence of a demonstrator. The demonstrator is present in the beginning of the training and thereafter removed. The robots are not being programmed to imitate the demonstrator but are only instructed to solve the navigation tasks. By comparing the performance of the robots of the two sets the impact of the demonstrator is investigated. The results show that the robots evolved with a demonstrator need less training time than the robots evolved without any demonstrator except when the task is easy to solve in which case the demonstrator seems to have no effect on the performance of the robots. It is concluded that evolved robots are able to imitate demonstrators even if the robots are not explicitly programmed to follow the demonstrators.

sted, utgiver, år, opplag, sider
Skövde: Institutionen för kommunikation och information , 2005. , s. 38
Emneord [en]
artificial Intelligence, Evolutionary Algorithms
HSV kategori
Identifikatorer
URN: urn:nbn:se:his:diva-976OAI: oai:DiVA.org:his-976DiVA, id: diva2:3402
Presentation
(engelsk)
Uppsök
Technology
Veileder
Tilgjengelig fra: 2008-03-19 Laget: 2008-03-19 Sist oppdatert: 2018-01-12

Open Access i DiVA

fulltekst(19578 kB)497 nedlastinger
Filinformasjon
Fil FULLTEXT01.psFilstørrelse 19578 kBChecksum SHA-1
b07251f3888662815f178127109fe67e0b01b37a440a84908fe03caf81c5b4675b1c05bb
Type fulltextMimetype application/postscript
fulltekst(215 kB)176 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 215 kBChecksum SHA-512
e10dd3d026949b2e1dcb456a3f02891815d294beeb03fcde7f301a583aed69fd26cb67f3d64a6a20fd4ae724e4db8fb54ba87a939c6809103a014731a659afd2
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 673 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 339 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf