his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Rule Extraction from Opaque Models: A Slightly Different Perspective
Högskolan i Skövde, Institutionen för kommunikation och information.
Högskolan i Skövde, Institutionen för kommunikation och information.
Vise andre og tillknytning
2006 (engelsk)Inngår i: 6th International Conference on Machine Learning and Applications, IEEE Computer Society, 2006, s. 22-27Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

When performing predictive modeling, the key criterion is always accuracy. With this in mind, complex techniques like neural networks or ensembles are normally used, resulting in opaque models impossible to interpret. When models need to be comprehensible, accuracy is often sacrificed by using simpler techniques directly producing transparent models; a tradeoff termed the accuracy vs. comprehensibility tradeoff. In order to reduce this tradeoff, the opaque model can be transformed into another, interpretable, model; an activity termed rule extraction. In this paper, it is argued that rule extraction algorithms should gain from using oracle data; i.e. test set instances, together with corresponding predictions from the opaque model. The experiments, using 17 publicly available data sets, clearly show that rules extracted using only oracle data were significantly more accurate than both rules extracted by the same algorithm, using training data, and standard decision tree algorithms. In addition, the same rules were also significantly more compact; thus providing better comprehensibility. The overall implication is that rules extracted in this fashion will explain the predictions made on novel data better than rules extracted in the standard way; i.e. using training data only.

sted, utgiver, år, opplag, sider
IEEE Computer Society, 2006. s. 22-27
Identifikatorer
URN: urn:nbn:se:his:diva-1952DOI: 10.1109/ICMLA.2006.46ISI: 000244477800004Scopus ID: 2-s2.0-40349090116ISBN: 0-7695-2735-3 OAI: oai:DiVA.org:his-1952DiVA, id: diva2:32228
Tilgjengelig fra: 2008-04-11 Laget: 2008-04-11 Sist oppdatert: 2017-11-27

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Löfström, ToveKönig, RichardNiklasson, Lars

Søk i DiVA

Av forfatter/redaktør
Löfström, ToveKönig, RichardNiklasson, Lars
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 398 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf