Högskolan i Skövde

his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Why Not Use an Oracle When You Got One?
Högskolan i Skövde, Institutionen för kommunikation och information. School of Business and Informatics, University of Borås, Borås, Sweden.
School of Business and Informatics, University of Borås.
School of Business and Informatics, University of Borås.
Högskolan i Skövde, Institutionen för kommunikation och information.
2006 (engelsk)Inngår i: Neural Information Processing: Letters and Reviews, ISSN 1738-2572, Vol. 10, nr 8-9, s. 227-236Artikkel i tidsskrift, Letter (Fagfellevurdert) Published
Abstract [en]

The primary goal of predictive modeling is to achieve high accuracy when the model is applied to novel data. For certain problems this requires the use of complex techniques like neural networks or ensembles, resulting in opaque models that are hard or impossible to interpret. For some domains this is unacceptable, since models need to be comprehensible. To achieve comprehensibility, accuracy is often sacrificed by using simpler techniques; a tradeoff termed the accuracy vs. comprehensibility tradeoff. Another, frequently studied, alternative is rule extraction; i.e. the activity where another, transparent, model is generated from the opaque model. In this paper it is argued that existing rule extraction algorithms do not use all information available, and typically should benefit from also using oracle data; i.e. test set instances, together with corresponding predictions from the opaque model. The experiments, using fifteen publicly available data sets, clearly show that rules extracted using either just oracle data or training data augmented with oracle data, will explain the predictions significantly better than rules extracted in the standard way; i.e. using training data only.

sted, utgiver, år, opplag, sider
Neural Information Processing , 2006. Vol. 10, nr 8-9, s. 227-236
Identifikatorer
URN: urn:nbn:se:his:diva-1909OAI: oai:DiVA.org:his-1909DiVA, id: diva2:32185
Tilgjengelig fra: 2007-09-21 Laget: 2007-09-21 Sist oppdatert: 2017-11-27bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Länk till fulltext

Person

Niklasson, Lars

Søk i DiVA

Av forfatter/redaktør
Niklasson, Lars
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 490 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf