his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Deriving pathway maps from automated text analysis using a grammar-based approach
Högskolan i Skövde, Institutionen för kommunikation och information.ORCID-id: 0000-0001-6254-4335
Högskolan i Skövde, Institutionen för kommunikation och information.
Högskolan i Skövde, Institutionen för kommunikation och information.
2006 (engelsk)Inngår i: Journal of Bioinformatics and Computational Biology, ISSN 0219-7200, E-ISSN 1757-6334, Vol. 4, nr 2, s. 483-501Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We demonstrate how automated text analysis can be used to support the large-scale analysis of metabolic and regulatory pathways by deriving pathway maps from textual descriptions found in the scientific literature. The main assumption is that correct syntactic analysis combined with domain-specific heuristics provides a good basis for relation extraction. Our method uses an algorithm that searches through the syntactic trees produced by a parser based on a Referent Grammar formalism, identifies relations mentioned in the sentence, and classifies them with respect to their semantic class and epistemic status (facts, counterfactuals, hypotheses). The semantic categories used in the classification are based on the relation set used in KEGG (Kyoto Encyclopedia of Genes and Genomes), so that pathway maps using KEGG notation can be automatically generated. We present the current version of the relation extraction algorithm and an evaluation based on a corpus of abstracts obtained from PubMed. The results indicate that the method is able to combine a reasonable coverage with high accuracy. We found that 61% of all sentences were parsed, and 97% of the parse trees were judged to be correct. The extraction algorithm was tested on a sample of 300 parse trees and was found to produce correct extractions in 90.5% of the cases.

sted, utgiver, år, opplag, sider
World Scientific, 2006. Vol. 4, nr 2, s. 483-501
Identifikatorer
URN: urn:nbn:se:his:diva-1858DOI: 10.1142/S0219720006002041Scopus ID: 2-s2.0-33745684308OAI: oai:DiVA.org:his-1858DiVA, id: diva2:32134
Tilgjengelig fra: 2007-09-12 Laget: 2007-09-12 Sist oppdatert: 2017-12-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Olsson, BjörnGawronska, BarbaraErlendsson, Björn

Søk i DiVA

Av forfatter/redaktør
Olsson, BjörnGawronska, BarbaraErlendsson, Björn
Av organisasjonen
I samme tidsskrift
Journal of Bioinformatics and Computational Biology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 883 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf