Högskolan i Skövde

his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Genetically Evolved Trees Representing Ensembles
School of Business and Informatics, University of Borås, Sweden.
School of Business and Informatics, University of Borås, Sweden.
School of Business and Informatics, University of Borås, Sweden.
Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (Skövde Cognition and Artificial Intelligence Lab (SCAI))
2006 (engelsk)Inngår i: Artificial Intelligence and Soft Computing – ICAISC 2006: 8th International Conference, Zakopane, Poland, June 25-29, 2006. Proceedings / [ed] Leszek Rutkowski, Ryszard Tadeusiewicz, Lotfi A. Zadeh, Jacek M. Żurada, Springer, 2006, s. 613-622Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

We have recently proposed a novel algorithm for ensemble creation called GEMS (Genetic Ensemble Member Selection). GEMS first trains a fixed number of neural networks (here twenty) and then uses genetic programming to combine these networks into an ensemble. The use of genetic programming makes it possible for GEMS to not only consider ensembles of different sizes, but also to use ensembles as intermediate building blocks. In this paper, which is the first extensive study of GEMS, the representation language is extended to include tests partitioning the data, further increasing flexibility. In addition, several micro techniques are applied to reduce overfitting, which appears to be the main problem for this powerful algorithm. The experiments show that GEMS, when evaluated on 15 publicly available data sets, obtains very high accuracy, clearly outperforming both straightforward ensemble designs and standard decision tree algorithms.

sted, utgiver, år, opplag, sider
Springer, 2006. s. 613-622
Serie
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 4029
HSV kategori
Forskningsprogram
Teknik
Identifikatorer
URN: urn:nbn:se:his:diva-1587DOI: 10.1007/11785231_64ISI: 000239600000064Scopus ID: 2-s2.0-33746239343ISBN: 978-3-540-35748-3 (tryckt)ISBN: 978-3-540-35750-6 (digital)ISBN: 3-540-35748-3 (tryckt)OAI: oai:DiVA.org:his-1587DiVA, id: diva2:31863
Konferanse
Artificial Intelligence and Soft Computing – ICAISC 2006, 8th International Conference, Zakopane, Poland, June 25-29, 2006
Merknad

Also part of the Lecture Notes in Artificial Intelligence book sub series (LNAI, volume 4029)

Tilgjengelig fra: 2008-02-08 Laget: 2008-02-08 Sist oppdatert: 2021-04-22bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Löfström, TuveKönig, RikardNiklasson, Lars

Søk i DiVA

Av forfatter/redaktør
Löfström, TuveKönig, RikardNiklasson, Lars
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 531 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf