Högskolan i Skövde

his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predicting gene expression using artificial neural networks
Högskolan i Skövde, Institutionen för datavetenskap.
2002 (engelsk)Independent thesis Advanced level (degree of Master (One Year))Oppgave
Abstract [en]

Today one of the greatest aims within the area of bioinformatics is to gain a complete understanding of the functionality of genes and the systems behind gene regulation. Regulatory relationships among genes seem to be of a complex nature since transcriptional control is the result of complex networks interpreting a variety of inputs. It is therefore essential to develop analytical tools detecting complex genetic relationships.

This project examines the possibility of the data mining technique artificial neural network (ANN) detecting regulatory relationships between genes. As an initial step for finding regulatory relationships with the help of ANN the goal of this project is to train an ANN to predict the expression of an individual gene. The genes predicted are the nuclear receptor PPAR-g and the insulin receptor. Predictions of the two target genes respectively were made using different datasets of gene expression data as input for the ANN. The results of the predictions of PPAR-g indicate that it is not possible to predict the expression of PPAR-g under the circumstances for this experiment. The results of the predictions of the insulin receptor indicate that it is not possible to discard using ANN for predicting the gene expression of an individual gene.

sted, utgiver, år, opplag, sider
Skövde: Institutionen för datavetenskap , 2002. , s. 76
Emneord [en]
Artificial neural networks gene expression
HSV kategori
Identifikatorer
URN: urn:nbn:se:his:diva-707OAI: oai:DiVA.org:his-707DiVA, id: diva2:3107
Presentation
(engelsk)
Uppsök
Physics, Chemistry, Mathematics
Veileder
Tilgjengelig fra: 2008-02-04 Laget: 2008-02-04 Sist oppdatert: 2018-01-12

Open Access i DiVA

fulltekst(779 kB)793 nedlastinger
Filinformasjon
Fil FULLTEXT01.psFilstørrelse 779 kBChecksum SHA-1
6b1100cc6449768685f8d81a586cac30b52f8e54fce603847511f3d3e4a6b0e4f142870e
Type fulltextMimetype application/postscript
fulltekst(250 kB)248 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 250 kBChecksum SHA-512
3e1c376ea629a93cd8542d158b3d424c79ff15db9e1fb6ac1eb9d0c5b25143fc18144378131080700648427036a79cf6bfa4e0a22cb5ee1ff7a2bcde0ddf62d1
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 1041 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 548 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf