his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Supporting Maritime Situation Awareness Using Self Organizing Maps and Gaussian Mixture Models
Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (SAIL)
Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (SAIL)
Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (SAIL)
Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
2008 (engelsk)Inngår i: Proceedings of the Tenth Scandinavian Conference on Artificial Intelligence (SCAI 2008) / [ed] Anders Holst, Per Kreuger, Peter Funk, Amsterdam: IOS Press, 2008, s. 84-91Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Maritime situation awareness is of importance in a lot of areas – e.g. detection of weapon smuggling in military peacekeeping operations, and harbor traffic control missions for the coast guard. In this paper, we have combined the use of Self Organizing Maps with Gaussian Mixture Models, in order to enable situation awareness by detecting deviations from normal behavior in an unsupervised way. Initial results show that simple anomalies can be detected using this approach.

sted, utgiver, år, opplag, sider
Amsterdam: IOS Press, 2008. s. 84-91
Serie
Frontiers in Artificial Intelligence and Applications, ISSN 0922-6389 ; 173
Emneord [en]
anomaly detection, situation awareness, data mining, surveillance
HSV kategori
Forskningsprogram
Teknik
Identifikatorer
URN: urn:nbn:se:his:diva-3663ISI: 000273520700011Scopus ID: 2-s2.0-84867489381ISBN: 978-1-58603-867-0 OAI: oai:DiVA.org:his-3663DiVA, id: diva2:292599
Konferanse
10th Scandinavian Conference on Artificial Intelligence, SCAI 2008; Stockholm; 26 May 2008 through 28 May 2008
Tilgjengelig fra: 2010-02-08 Laget: 2010-02-08 Sist oppdatert: 2018-01-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Scopushttp://www.booksonline.iospress.nl/Content/View.aspx?piid=8981http://books.google.com/books?id=eju691VMQlsC&lpg=PA84&ots=4KW5Cmq9q1&dq=%22Supporting%20Maritime%20Situation%20Awareness%20Using%20Self%20Organizing%20Maps%20and%20Gaussian%20Mixture%20Models%22&pg=PA84#v=onepage&q=%22Supporting%20Maritime%20Situation%20Awareness%20Using%20Self%20Organizing%20Maps%20and%20Gaussian%20Mixture%20Models%22&f=falsehttp://dl.acm.org/citation.cfm?id=1566877

Personposter BETA

Riveiro, MariaJohansson, FredrikFalkman, GöranZiemke, Tom

Søk i DiVA

Av forfatter/redaktør
Riveiro, MariaJohansson, FredrikFalkman, GöranZiemke, Tom
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 91 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf