his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Visual Analytics for the Detection of Anomalous Maritime Behavior
Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.ORCID-id: 0000-0003-2900-9335
Högskolan i Skövde, Forskningscentrum för Informationsteknologi. Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Skövde Artificial Intelligence Lab (SAIL).ORCID-id: 0000-0001-8884-2154
Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.ORCID-id: 0000-0001-6883-2450
2008 (engelsk)Inngår i: Proceedings of 12th International Conference on Information Visualisation IV08 / [ed] Ebad Banissi, Liz Stuart, Mikael Jern, Gennady Andrienko, Francis T. Marchese, Nasrullah Memon, Reda Alhajj, Theodor G. Wyeld, Remo Aslak Burkhard, Georges Grinstein, Dennis Groth, Anna Ursyn, Carsten Maple, Anthony Faiola, and Brock Craft, IEEE Computer Society, 2008, s. 273-279Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The surveillance of large sea areas often generates huge amounts of multidimensional data. Exploring, analyzing and finding anomalous behavior within this data is a complex task. Confident decisions upon the abnormality of a particular vessel behavior require a certain level of situation awareness that may be difficult to achieve when the operator is overloaded by the available information. Based on a visual analytics process model, we present a novel system that supports the acquisition of situation awareness and the involvement of the user in the anomaly detection process using two layers of interactive visualizations. The system uses an interactive data mining module that supports the insertion of the user's knowledge and experience in the creation, validation and continuous update of the normal model of the environment.

sted, utgiver, år, opplag, sider
IEEE Computer Society, 2008. s. 273-279
Emneord [en]
anomaly detection, interaction, visualization, visual analytics, situation awareness, surveillance
HSV kategori
Forskningsprogram
Teknik
Identifikatorer
URN: urn:nbn:se:his:diva-3625DOI: 10.1109/IV.2008.25ISI: 000259178400042Scopus ID: 2-s2.0-51749122411ISBN: 978-0-7695-3268-4 OAI: oai:DiVA.org:his-3625DiVA, id: diva2:291325
Konferanse
12th International Conference Information Visualisation, IV08; London; United Kingdom; 9 July 2008 through 11 July 2008
Tilgjengelig fra: 2010-02-01 Laget: 2010-02-01 Sist oppdatert: 2018-01-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Riveiro, MariaFalkman, GöranZiemke, Tom

Søk i DiVA

Av forfatter/redaktør
Riveiro, MariaFalkman, GöranZiemke, Tom
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 55 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf